1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-19 15:25:29 +01:00
PropertyT.jl/test/actions.jl

211 lines
6.2 KiB
Julia
Raw Normal View History

2022-11-07 18:45:12 +01:00
function test_action(basis, group, act)
action = SymbolicWedderburn.action
return @testset "action definition" begin
@test all(basis) do b
e = one(group)
action(act, e, b) == b
end
a = let a = rand(basis)
while isone(a)
a = rand(basis)
end
@assert !isone(a)
a
end
g, h = let g_h = rand(group, 2)
while any(isone, g_h)
g_h = rand(group, 2)
end
@assert all(!isone, g_h)
g_h
end
action = SymbolicWedderburn.action
@test action(act, g, a) in basis
@test action(act, h, a) in basis
@test action(act, h, action(act, g, a)) == action(act, g * h, a)
@test all([(g, h) for g in group for h in group]) do (g, h)
x = action(act, h, action(act, g, a))
y = action(act, g * h, a)
x == y
end
if act isa SymbolicWedderburn.ByPermutations
@test all(basis) do b
action(act, g, b) basis && action(act, h, b) basis
end
end
2019-07-05 18:57:39 +02:00
end
2022-11-07 18:45:12 +01:00
end
## Testing
@testset "Actions on SL(3,)" begin
n = 3
SL = MatrixGroups.SpecialLinearGroup{n}(Int8)
RSL, S, sizes = PropertyT.group_algebra(SL, halfradius=2, twisted=true)
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
@testset "Permutation action" begin
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
Γ = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
ΓpA = PropertyT.action_by_conjugation(SL, Γ)
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
test_action(basis(RSL), Γ, ΓpA)
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
@testset "mps is successful" begin
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
charsΓ =
SymbolicWedderburn.Character{
Rational{Int},
}.(SymbolicWedderburn.irreducible_characters(Γ))
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
= SymbolicWedderburn._group_algebra(Γ)
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
@time mps, simple =
SymbolicWedderburn.minimal_projection_system(charsΓ, )
@test all(simple)
end
@testset "Wedderburn decomposition" begin
wd = SymbolicWedderburn.WedderburnDecomposition(
Rational{Int},
Γ,
ΓpA,
basis(RSL),
StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]])
)
@test length(invariant_vectors(wd)) == 918
@test SymbolicWedderburn.size.(direct_summands(wd), 1) == [40, 23, 18]
@test all(issimple, direct_summands(wd))
2019-07-05 18:57:39 +02:00
end
end
2022-11-07 18:45:12 +01:00
@testset "Wreath action" begin
Γ = let P = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
end
ΓpA = PropertyT.action_by_conjugation(SL, Γ)
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
test_action(basis(RSL), Γ, ΓpA)
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
@testset "mps is successful" begin
charsΓ =
SymbolicWedderburn.Character{
Rational{Int},
}.(SymbolicWedderburn.irreducible_characters(Γ))
= SymbolicWedderburn._group_algebra(Γ)
@time mps, simple =
SymbolicWedderburn.minimal_projection_system(charsΓ, )
@test all(simple)
end
@testset "Wedderburn decomposition" begin
wd = SymbolicWedderburn.WedderburnDecomposition(
Rational{Int},
Γ,
ΓpA,
basis(RSL),
StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]])
)
@test length(invariant_vectors(wd)) == 247
@test SymbolicWedderburn.size.(direct_summands(wd), 1) == [14, 9, 6, 14, 12]
@test all(issimple, direct_summands(wd))
2019-07-05 18:57:39 +02:00
end
end
end
2022-11-07 18:45:12 +01:00
@testset "Actions on SAut(F4)" begin
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
n = 4
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
SAutFn = SpecialAutomorphismGroup(FreeGroup(n))
RSAutFn, S, sizes = PropertyT.group_algebra(SAutFn, halfradius=1, twisted=true)
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
@testset "Permutation action" begin
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
Γ = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
ΓpA = PropertyT.action_by_conjugation(SAutFn, Γ)
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
test_action(basis(RSAutFn), Γ, ΓpA)
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
@testset "mps is successful" begin
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
charsΓ =
SymbolicWedderburn.Character{
Rational{Int},
}.(SymbolicWedderburn.irreducible_characters(Γ))
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
= SymbolicWedderburn._group_algebra(Γ)
@time mps, simple =
SymbolicWedderburn.minimal_projection_system(charsΓ, )
@test all(simple)
end
@testset "Wedderburn decomposition" begin
wd = SymbolicWedderburn.WedderburnDecomposition(
Rational{Int},
Γ,
ΓpA,
basis(RSAutFn),
StarAlgebras.Basis{UInt16}(@view basis(RSAutFn)[1:sizes[1]])
)
@test length(invariant_vectors(wd)) == 93
@test SymbolicWedderburn.size.(direct_summands(wd), 1) == [4, 8, 5, 4]
@test all(issimple, direct_summands(wd))
2019-07-05 18:57:39 +02:00
end
end
2022-11-07 18:45:12 +01:00
@testset "Wreath action" begin
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
Γ = let P = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
end
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
ΓpA = PropertyT.action_by_conjugation(SAutFn, Γ)
test_action(basis(RSAutFn), Γ, ΓpA)
@testset "mps is successful" begin
charsΓ =
SymbolicWedderburn.Character{
Rational{Int},
}.(SymbolicWedderburn.irreducible_characters(Γ))
= SymbolicWedderburn._group_algebra(Γ)
2019-07-05 18:57:39 +02:00
2022-11-07 18:45:12 +01:00
@time mps, simple =
SymbolicWedderburn.minimal_projection_system(charsΓ, )
@test all(simple)
end
@testset "Wedderburn decomposition" begin
wd = SymbolicWedderburn.WedderburnDecomposition(
Rational{Int},
Γ,
ΓpA,
basis(RSAutFn),
StarAlgebras.Basis{UInt16}(@view basis(RSAutFn)[1:sizes[1]])
)
@test length(invariant_vectors(wd)) == 18
@test SymbolicWedderburn.size.(direct_summands(wd), 1) == [1, 1, 2, 2, 1, 2, 2, 1]
@test all(issimple, direct_summands(wd))
end
end
2019-07-05 18:57:39 +02:00
end