1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-14 14:15:28 +01:00
PropertyT.jl/AutGroups.jl

112 lines
3.0 KiB
Julia
Raw Normal View History

module AutGroups
using Groups
using Permutations
2017-01-21 17:19:08 +01:00
import Base: inv, ^
2017-01-21 17:17:45 +01:00
import Groups: IdSymbol, change_pow, GWord, ==, hash, reduce!
2017-01-21 17:19:08 +01:00
export AutSymbol, AutWord, GWord
export rmul_AutSymbol, lmul_AutSymbol, flip_AutSymbol, symmetric_AutSymbol
immutable AutSymbol <: GSymbol
gen::String
pow::Int
ex::Expr
end
2017-01-21 17:17:45 +01:00
(==)(s::AutSymbol, t::AutSymbol) = s.gen == t.gen && s.pow == t.pow
hash(s::AutSymbol, h::UInt) = hash(s.gen, hash(s.pow, hash(:AutSymbol, h)))
2017-01-21 17:20:15 +01:00
IdSymbol(::Type{AutSymbol}) = AutSymbol("(id)", 0, :(IdAutomorphism(N)))
2017-01-21 17:21:45 +01:00
function change_pow(s::AutSymbol, n::Int)
if n == 0
return one(s)
end
symbol = s.ex.args[1]
if symbol ==
2017-01-21 17:21:45 +01:00
return flip_AutSymbol(s.ex.args[2], pow=n)
elseif symbol == :σ
2017-01-21 17:21:45 +01:00
return symmetric_AutSymbol(s.ex.args[2], pow=n)
elseif symbol == :ϱ
return rmul_AutSymbol(s.ex.args[2], s.ex.args[3], pow=n)
elseif symbol ==
return lmul_AutSymbol(s.ex.args[2], s.ex.args[3], pow=n)
elseif symbol == :IdAutomorphism
return s
else
2017-01-21 17:21:45 +01:00
warn("Changing an unknown type of symbol! $s")
return AutSymbol(s.gen, n, s.ex)
end
end
inv(f::AutSymbol) = change_pow(f, -1*f.pow)
(^)(s::AutSymbol, n::Integer) = change_pow(s, s.pow*n)
function rmul_AutSymbol(i,j; pow::Int=1)
gen = string('ϱ',Char(8320+i), Char(8320+j)...)
return AutSymbol(gen, pow, :(ϱ($i,$j)))
end
function lmul_AutSymbol(i,j; pow::Int=1)
gen = string('λ',Char(8320+i), Char(8320+j)...)
return AutSymbol(gen, pow, :(λ($i,$j)))
end
function flip_AutSymbol(j; pow::Int=1)
gen = string('ɛ', Char(8320 + j))
return AutSymbol(gen, (2+ pow%2)%2, :(ɛ($j)))
end
function symmetric_AutSymbol(perm::Vector{Int}; pow::Int=1)
# if perm == collect(1:length(perm))
# return one(AutSymbol)
# end
perm = Permutation(perm)
ord = order(perm)
pow = pow % ord
perm = perm^pow
gen = string('σ', [Char(8320 + i) for i in array(perm)]...)
return AutSymbol(gen, 1, :(σ($(array(perm)))))
end
function getperm(s::AutSymbol)
if s.ex.args[1] == :σ
return s.ex.args[2]
else
throw(ArgumentError("$s is not a permutation automorphism!"))
end
end
typealias AutWord GWord{AutSymbol}
function simplify_perms!(W::AutWord)
reduced = true
for i in 1:length(W.symbols) - 1
current = W.symbols[i]
if current.ex.args[1] == :σ
if current.pow != 1
current = symmetric_AutSymbol(perm(current), pow=current.pow)
end
next_s = W.symbols[i+1]
if next_s.ex.args[1] == :σ
reduced = false
if next_s.pow != 1
next_s = symmetric_AutSymbol(perm(next_s), pow=next_s.pow)
end
p1 = Permutation(getperm(current))
p2 = Permutation(getperm(next_s))
W.symbols[i] = one(AutSymbol)
W.symbols[i+1] = symmetric_AutSymbol(array(p1*p2))
end
end
end
return reduced
end
end #end of module AutGroups