mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-13 14:00:27 +01:00
97 lines
2.3 KiB
Julia
97 lines
2.3 KiB
Julia
|
using LinearAlgebra
|
|||
|
BLAS.set_num_threads(4)
|
|||
|
ENV["OMP_NUM_THREADS"] = 4
|
|||
|
include(joinpath(@__DIR__, "../test/optimizers.jl"))
|
|||
|
using SCS_MKL_jll
|
|||
|
|
|||
|
using Groups
|
|||
|
import Groups.MatrixGroups
|
|||
|
|
|||
|
using PropertyT
|
|||
|
|
|||
|
import PropertyT.SW as SW
|
|||
|
using PropertyT.PG
|
|||
|
using PropertyT.SA
|
|||
|
|
|||
|
include(joinpath(@__DIR__, "argparse.jl"))
|
|||
|
|
|||
|
const N = parsed_args["N"]
|
|||
|
const HALFRADIUS = parsed_args["halfradius"]
|
|||
|
const UPPER_BOUND = parsed_args["upper_bound"]
|
|||
|
|
|||
|
G = MatrixGroups.SpecialLinearGroup{N}(Int8)
|
|||
|
@info "Running Adj - λ·Δ sum of squares decomposition for " G
|
|||
|
|
|||
|
@info "computing group algebra structure"
|
|||
|
RG, S, sizes = @time PropertyT.group_algebra(G, halfradius = HALFRADIUS)
|
|||
|
|
|||
|
@info "computing WedderburnDecomposition"
|
|||
|
wd = let RG = RG, N = N
|
|||
|
G = StarAlgebras.object(RG)
|
|||
|
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
|
|||
|
Σ = Groups.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
|
|||
|
act = PropertyT.action_by_conjugation(G, Σ)
|
|||
|
|
|||
|
wdfl = @time SW.WedderburnDecomposition(
|
|||
|
Float64,
|
|||
|
Σ,
|
|||
|
act,
|
|||
|
basis(RG),
|
|||
|
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[HALFRADIUS]]),
|
|||
|
)
|
|||
|
end
|
|||
|
@info wd
|
|||
|
|
|||
|
Δ = RG(length(S)) - sum(RG(s) for s in S)
|
|||
|
Δs = let ψ = identity
|
|||
|
PropertyT.laplacians(RG, S, x -> (gx = PropertyT.grading(ψ(x)); Set([gx, -gx])))
|
|||
|
end
|
|||
|
elt = PropertyT.Adj(Δs, :A₂)
|
|||
|
unit = Δ
|
|||
|
warm = nothing
|
|||
|
|
|||
|
@info "defining optimization problem"
|
|||
|
@time model, varP = PropertyT.sos_problem_primal(
|
|||
|
elt,
|
|||
|
unit,
|
|||
|
wd;
|
|||
|
upper_bound = UPPER_BOUND,
|
|||
|
augmented = true,
|
|||
|
)
|
|||
|
|
|||
|
begin
|
|||
|
@time status, warm = PropertyT.solve(
|
|||
|
model,
|
|||
|
scs_optimizer(;
|
|||
|
eps = 1e-10,
|
|||
|
max_iters = 20_000,
|
|||
|
accel = 50,
|
|||
|
alpha = 1.95,
|
|||
|
),
|
|||
|
warm,
|
|||
|
)
|
|||
|
|
|||
|
@info "reconstructing the solution"
|
|||
|
Q = let wd = wd, Ps = [JuMP.value.(P) for P in varP]
|
|||
|
Qs = real.(sqrt.(Ps))
|
|||
|
PropertyT.reconstruct(Qs, wd)
|
|||
|
end
|
|||
|
|
|||
|
@info "certifying the solution"
|
|||
|
@time certified, λ = PropertyT.certify_solution(
|
|||
|
elt,
|
|||
|
unit,
|
|||
|
JuMP.objective_value(model),
|
|||
|
Q;
|
|||
|
halfradius = HALFRADIUS,
|
|||
|
augmented = true,
|
|||
|
)
|
|||
|
end
|
|||
|
|
|||
|
if certified && λ > 0
|
|||
|
Κ(λ, S) = round(sqrt(2λ / length(S)), Base.RoundDown; digits = 5)
|
|||
|
@info "Certified result: $G has property (T):" N λ Κ(λ, S)
|
|||
|
else
|
|||
|
@info "Could NOT certify the result:" certified λ
|
|||
|
end
|