1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-12-26 18:40:29 +01:00
PropertyT.jl/test/actions.jl

105 lines
3.4 KiB
Julia
Raw Normal View History

2019-07-05 18:57:39 +02:00
@testset "actions on Group[Rings]" begin
Eij = PropertyT.EltaryMat
ssgs(M::MatAlgebra, i, j) = (S = [Eij(M, i, j), Eij(M, j, i)];
S = unique([S; inv.(S)]); S)
rmul = Groups.rmul_autsymbol
lmul = Groups.lmul_autsymbol
function ssgs(A::AutGroup, i, j)
rmuls = [rmul(i,j), rmul(j,i)]
lmuls = [lmul(i,j), lmul(j,i)]
gen_set = A.([rmuls; lmuls])
return unique([gen_set; inv.(gen_set)])
end
@testset "actions on SL(3,Z) and its group ring" begin
N = 3
halfradius = 2
M = MatrixAlgebra(zz, N)
S = PropertyT.generating_set(M)
E_R, sizes = Groups.generate_balls(S, one(M), radius=2halfradius);
rdict = GroupRings.reverse_dict(E_R)
pm = GroupRings.create_pm(E_R, rdict, sizes[halfradius]; twisted=false);
RG = GroupRing(M, E_R, rdict, pm)
@testset "correctness of actions" begin
Δ = length(S)*RG(1) - sum(RG(s) for s in S)
@test Δ == PropertyT.spLaplacian(RG, S)
elt = S[5]
x = RG(1) - RG(elt)
elt2 = E_R[rand(sizes[1]:sizes[2])]
y = 2RG(elt2) - RG(elt)
for G in [PermGroup(N), WreathProduct(PermGroup(2), PermGroup(N))]
@test all(g(one(M)) == one(M) for g in G)
@test all(rdict[g(m)] <= sizes[1] for g in G for m in S)
@test all(g(m)*g(n) == g(m*n) for g in G for m in S for n in S)
@test all(g(Δ) == Δ for g in G)
@test all(g(x) == RG(1) - RG(g(elt)) for g in G)
@test all(2RG(g(elt2)) - RG(g(elt)) == g(y) for g in G)
end
end
@testset "small Laplacians" begin
for (i,j) in PropertyT.indexing(N)
Sij = ssgs(M, i,j)
Δij= PropertyT.spLaplacian(RG, Sij)
@test all(p(Δij) == PropertyT.spLaplacian(RG, ssgs(M, p[i], p[j])) for p in PermGroup(N))
@test all(g(Δij) == PropertyT.spLaplacian(RG, ssgs(M, g.p[i], g.p[j])) for g in WreathProduct(PermGroup(2), PermGroup(N)))
end
end
end
@testset "actions on SAut(F_3) and its group ring" begin
N = 3
halfradius = 2
M = SAut(FreeGroup(N))
S = PropertyT.generating_set(M)
E_R, sizes = Groups.generate_balls(S, one(M), radius=2halfradius);
rdict = GroupRings.reverse_dict(E_R)
pm = GroupRings.create_pm(E_R, rdict, sizes[halfradius]; twisted=false);
RG = GroupRing(M, E_R, rdict, pm)
@testset "correctness of actions" begin
Δ = length(S)*RG(1) - sum(RG(s) for s in S)
@test Δ == PropertyT.spLaplacian(RG, S)
elt = S[5]
x = RG(1) - RG(elt)
elt2 = E_R[rand(sizes[1]:sizes[2])]
y = 2RG(elt2) - RG(elt)
for G in [PermGroup(N), WreathProduct(PermGroup(2), PermGroup(N))]
@test all(g(one(M)) == one(M) for g in G)
@test all(rdict[g(m)] <= sizes[1] for g in G for m in S)
@test all(g(m)*g(n) == g(m*n) for g in G for m in S for n in S)
@test all(g(Δ) == Δ for g in G)
@test all(g(x) == RG(1) - RG(g(elt)) for g in G)
@test all(2RG(g(elt2)) - RG(g(elt)) == g(y) for g in G)
end
end
for (i,j) in PropertyT.indexing(N)
Sij = ssgs(M, i,j)
Δij= PropertyT.spLaplacian(RG, Sij)
@test all(p(Δij) == PropertyT.spLaplacian(RG, ssgs(M, p[i], p[j])) for p in PermGroup(N))
@test all(g(Δij) == PropertyT.spLaplacian(RG, ssgs(M, g.p[i], g.p[j])) for g in WreathProduct(PermGroup(2), PermGroup(N)))
end
end
end