mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-13 14:00:27 +01:00
184 lines
5.4 KiB
Julia
184 lines
5.4 KiB
Julia
|
module Roots
|
|||
|
|
|||
|
using StaticArrays
|
|||
|
using LinearAlgebra
|
|||
|
|
|||
|
export Root, isproportional, isorthogonal, ~, ⟂
|
|||
|
|
|||
|
abstract type AbstractRoot{N,T} end
|
|||
|
|
|||
|
struct Root{N,T} <: AbstractRoot{N,T}
|
|||
|
coord::SVector{N,T}
|
|||
|
end
|
|||
|
|
|||
|
Root(a) = Root(SVector(a...))
|
|||
|
|
|||
|
function Base.:(==)(r::Root{N}, s::Root{M}) where {M,N}
|
|||
|
M == N || return false
|
|||
|
r.coord == s.coord || return false
|
|||
|
return true
|
|||
|
end
|
|||
|
|
|||
|
Base.hash(r::Root, h::UInt) = hash(r.coord, hash(Root, h))
|
|||
|
|
|||
|
Base.:+(r::Root{N,T}, s::Root{N,T}) where {N,T} = Root{N,T}(r.coord + s.coord)
|
|||
|
Base.:-(r::Root{N,T}, s::Root{N,T}) where {N,T} = Root{N,T}(r.coord - s.coord)
|
|||
|
Base.:-(r::Root{N}) where {N} = Root(-r.coord)
|
|||
|
|
|||
|
Base.:*(a::Number, r::Root) = Root(a * r.coord)
|
|||
|
Base.:*(r::Root, a::Number) = a * r
|
|||
|
|
|||
|
Base.length(r::AbstractRoot) = norm(r, 2)
|
|||
|
|
|||
|
LinearAlgebra.norm(r::Root, p::Real=2) = norm(r.coord, p)
|
|||
|
LinearAlgebra.dot(r::Root, s::Root) = dot(r.coord, s.coord)
|
|||
|
|
|||
|
cos_angle(a, b) = dot(a, b) / (norm(a) * norm(b))
|
|||
|
|
|||
|
function isproportional(α::AbstractRoot{N}, β::AbstractRoot{M}) where {N,M}
|
|||
|
N == M || return false
|
|||
|
val = abs(cos_angle(α, β))
|
|||
|
return isapprox(val, one(val), atol=eps(one(val)))
|
|||
|
end
|
|||
|
|
|||
|
function isorthogonal(α::AbstractRoot{N}, β::AbstractRoot{M}) where {N,M}
|
|||
|
N == M || return false
|
|||
|
val = cos_angle(α, β)
|
|||
|
return isapprox(val, zero(val), atol=eps(one(val)))
|
|||
|
end
|
|||
|
|
|||
|
function _positive_direction(α::Root{N}) where {N}
|
|||
|
last = -1 / √2^(N - 1)
|
|||
|
return Root{N,Float64}(
|
|||
|
SVector(ntuple(i -> ifelse(i == N, last, (√2)^-i), N)),
|
|||
|
)
|
|||
|
end
|
|||
|
|
|||
|
function positive(roots::AbstractVector{<:Root{N}}) where {N}
|
|||
|
# return those roots for which dot(α, Root([½, ¼, …])) > 0.0
|
|||
|
pd = _positive_direction(first(roots))
|
|||
|
return filter(α -> dot(α, pd) > 0.0, roots)
|
|||
|
end
|
|||
|
|
|||
|
Base.:~(α::AbstractRoot, β::AbstractRoot) = isproportional(α, β)
|
|||
|
⟂(α::AbstractRoot, β::AbstractRoot) = isorthogonal(α, β)
|
|||
|
|
|||
|
function Base.show(io::IO, r::Root{N}) where {N}
|
|||
|
print(io, "Root$(r.coord)")
|
|||
|
end
|
|||
|
|
|||
|
function Base.show(io::IO, ::MIME"text/plain", r::Root{N}) where {N}
|
|||
|
lngth² = sum(x -> x^2, r.coord)
|
|||
|
l = isinteger(sqrt(lngth²)) ? "$(sqrt(lngth²))" : "√$(lngth²)"
|
|||
|
print(io, "Root in ℝ^$N of length $l\n", r.coord)
|
|||
|
end
|
|||
|
|
|||
|
E(N, i::Integer) = Root(ntuple(k -> k == i ? 1 : 0, N))
|
|||
|
𝕖(N, i) = E(N, i)
|
|||
|
𝕆(N, ::Type{T}) where {T} = Root(ntuple(_ -> zero(T), N))
|
|||
|
|
|||
|
"""
|
|||
|
classify_root_system(α, β)
|
|||
|
Return the symbol of smallest system generated by roots `α` and `β`.
|
|||
|
|
|||
|
The classification is based only on roots length and
|
|||
|
proportionality/orthogonality.
|
|||
|
"""
|
|||
|
function classify_root_system(α::AbstractRoot, β::AbstractRoot)
|
|||
|
lα, lβ = length(α), length(β)
|
|||
|
if isproportional(α, β)
|
|||
|
if lα ≈ lβ ≈ √2
|
|||
|
return :A₁
|
|||
|
elseif lα ≈ lβ ≈ 2.0
|
|||
|
return :C₁
|
|||
|
else
|
|||
|
error("Unknown root system ⟨α, β⟩:\n α = $α\n β = $β")
|
|||
|
end
|
|||
|
elseif isorthogonal(α, β)
|
|||
|
if lα ≈ lβ ≈ √2
|
|||
|
return Symbol("A₁×A₁")
|
|||
|
elseif lα ≈ lβ ≈ 2.0
|
|||
|
return Symbol("C₁×C₁")
|
|||
|
elseif (lα ≈ 2.0 && lβ ≈ √2) || (lα ≈ √2 && lβ ≈ 2)
|
|||
|
return Symbol("A₁×C₁")
|
|||
|
else
|
|||
|
error("Unknown root system ⟨α, β⟩:\n α = $α\n β = $β")
|
|||
|
end
|
|||
|
else # ⟨α, β⟩ is 2-dimensional, but they're not orthogonal
|
|||
|
if lα ≈ lβ ≈ √2
|
|||
|
return :A₂
|
|||
|
elseif (lα ≈ 2.0 && lβ ≈ √2) || (lα ≈ √2 && lβ ≈ 2)
|
|||
|
return :C₂
|
|||
|
else
|
|||
|
error("Unknown root system ⟨α, β⟩:\n α = $α\n β = $β")
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
function proportional_root_from_system(Ω::AbstractVector{<:Root}, α::Root)
|
|||
|
k = findfirst(v -> isproportional(α, v), Ω)
|
|||
|
if isnothing(k)
|
|||
|
error("Line L_α not contained in root system Ω:\n α = $α\n Ω = $Ω")
|
|||
|
end
|
|||
|
return Ω[k]
|
|||
|
end
|
|||
|
|
|||
|
struct Plane{R<:Root}
|
|||
|
v1::R
|
|||
|
v2::R
|
|||
|
vectors::Vector{R}
|
|||
|
end
|
|||
|
|
|||
|
Plane(α::R, β::R) where {R<:Root} =
|
|||
|
Plane(α, β, [a * α + b * β for a in -3:3 for b in -3:3])
|
|||
|
|
|||
|
function Base.in(r::R, plane::Plane{R}) where {R}
|
|||
|
return any(isproportional(r, v) for v in plane.vectors)
|
|||
|
end
|
|||
|
|
|||
|
function classify_sub_root_system(
|
|||
|
Ω::AbstractVector{<:Root{N}},
|
|||
|
α::Root{N},
|
|||
|
β::Root{N},
|
|||
|
) where {N}
|
|||
|
|
|||
|
v = proportional_root_from_system(Ω, α)
|
|||
|
w = proportional_root_from_system(Ω, β)
|
|||
|
|
|||
|
subsystem = filter(ω -> ω in Plane(v, w), Ω)
|
|||
|
@assert length(subsystem) > 0
|
|||
|
subsystem = positive(union(subsystem, -1 .* subsystem))
|
|||
|
|
|||
|
l = length(subsystem)
|
|||
|
if l == 1
|
|||
|
x = first(subsystem)
|
|||
|
return classify_root_system(x, x)
|
|||
|
elseif l == 2
|
|||
|
return classify_root_system(subsystem...)
|
|||
|
elseif l == 3
|
|||
|
a = classify_root_system(subsystem[1], subsystem[2])
|
|||
|
b = classify_root_system(subsystem[2], subsystem[3])
|
|||
|
c = classify_root_system(subsystem[1], subsystem[3])
|
|||
|
|
|||
|
if a == b == c # it's only A₂
|
|||
|
return a
|
|||
|
end
|
|||
|
|
|||
|
C = (:C₂, Symbol("C₁×C₁"))
|
|||
|
if (a ∈ C && b ∈ C && c ∈ C) && (:C₂ ∈ (a, b, c))
|
|||
|
return :C₂
|
|||
|
end
|
|||
|
elseif l == 4
|
|||
|
for i = 1:l
|
|||
|
for j = (i+1):l
|
|||
|
T = classify_root_system(subsystem[i], subsystem[j])
|
|||
|
T == :C₂ && return :C₂
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
@error "Unknown root subsystem generated by" α β
|
|||
|
throw("Unknown root system: $subsystem")
|
|||
|
end
|
|||
|
|
|||
|
end # of module Roots
|