1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-19 15:25:29 +01:00
PropertyT.jl/src/Orbit-wise.jl

252 lines
7.0 KiB
Julia
Raw Normal View History

2017-06-22 14:12:35 +02:00
using JuMP
using SCS
2017-06-22 15:15:43 +02:00
export Settings, OrbitData
2017-06-22 14:12:35 +02:00
immutable Settings{T<:AbstractMathProgSolver}
2018-01-01 14:06:33 +01:00
name::String
N::Int
G::Group
S::Vector
autS::Group
radius::Int
solver::T
upper_bound::Float64
tol::Float64
warmstart::Bool
2017-06-22 14:12:35 +02:00
end
prefix(s::Settings) = s.name
suffix(s::Settings) = "$(s.upper_bound)"
prepath(s::Settings) = prefix(s)
fullpath(s::Settings) = joinpath(prefix(s), suffix(s))
2017-11-08 09:58:37 +01:00
immutable OrbitData{T<:AbstractArray{Float64, 2}, LapType <:AbstractVector{Float64}}
2018-01-01 14:06:33 +01:00
name::String
Us::Vector{T}
Ps::Vector{Array{JuMP.Variable,2}}
cnstr::Vector{SparseMatrixCSC{Float64, Int}}
laplacian::LapType
laplacianSq::LapType
dims::Vector{Int}
2017-06-22 14:12:35 +02:00
end
function OrbitData(sett::Settings)
2018-01-02 02:55:53 +01:00
splap = load(filename(prepath(sett), ), "Δ");
pm = load(filename(prepath(sett), :pm), "pm");
2018-01-01 14:06:33 +01:00
cnstr = PropertyT.constraints(pm);
splap² = similar(splap)
splap² = GroupRings.mul!(splap², splap, splap, pm);
2017-06-22 15:09:46 +02:00
2018-01-02 02:55:53 +01:00
Uπs = load(filename(prepath(sett), :Uπs), "Uπs")
2018-01-01 14:06:33 +01:00
nzros = [i for i in 1:length(Uπs) if size(Uπs[i],2) !=0]
Uπs = Uπs[nzros]
Uπs = map(x -> sparsify!(x, sett.tol, verbose=true), Uπs)
2018-01-01 14:06:33 +01:00
#dimensions of the corresponding πs:
2018-01-02 02:55:53 +01:00
dims = load(filename(prepath(sett), :Uπs), "dims")[nzros]
2017-06-22 15:09:46 +02:00
2018-01-01 14:06:33 +01:00
m, P = init_model(size(Uπs,1), [size(U,2) for U in Uπs]);
2017-06-22 15:09:46 +02:00
2018-01-02 02:55:53 +01:00
orbits = load(filename(prepath(sett), :orb), "orbits");
2018-01-01 14:06:33 +01:00
n = size(Uπs[1],1)
orb_spcnstrm = [orbit_constraint(cnstr[collect(orb)], n) for orb in orbits]
orb_splap = orbit_spvector(splap, orbits)
orb_splap² = orbit_spvector(splap², orbits)
2017-06-22 15:09:46 +02:00
2018-01-01 14:06:33 +01:00
orbData = OrbitData(fullpath(sett), Uπs, P, orb_spcnstrm, orb_splap, orb_splap², dims);
2017-06-22 15:09:46 +02:00
2018-01-01 14:06:33 +01:00
# orbData = OrbitData(name, Uπs, P, orb_spcnstrm, splap, splap², dims);
2017-06-22 15:09:46 +02:00
2018-01-01 14:06:33 +01:00
return m, orbData
2017-06-22 15:09:46 +02:00
end
2017-06-22 14:12:35 +02:00
include("OrbitDecomposition.jl")
dens(M::SparseMatrixCSC) = nnz(M)/length(M)
dens(M::AbstractArray) = countnz(M)/length(M)
2017-07-26 10:29:11 +02:00
2017-08-27 21:23:42 +02:00
function sparsify!{Tv,Ti}(M::SparseMatrixCSC{Tv,Ti}, eps=eps(Tv); verbose=false)
2018-01-01 14:06:33 +01:00
densM = dens(M)
for i in eachindex(M.nzval)
if abs(M.nzval[i]) < eps
M.nzval[i] = zero(Tv)
end
end
dropzeros!(M)
if verbose
info("Sparsified density:", rpad(densM, 20), "", rpad(dens(M), 20), " ($(nnz(M)) non-zeros)")
2018-01-01 14:06:33 +01:00
end
return M
2017-06-22 14:12:35 +02:00
end
function sparsify!{T}(M::AbstractArray{T}, eps=eps(T); verbose=false)
2018-01-01 14:06:33 +01:00
densM = dens(M)
if verbose
info("Sparsifying $(size(M))-matrix... ")
end
for n in eachindex(M)
if abs(M[n]) < eps
M[n] = zero(T)
end
2018-01-01 14:06:33 +01:00
end
2018-01-01 14:06:33 +01:00
if verbose
info("$(rpad(densM, 20))$(rpad(dens(M),20))), ($(countnz(M)) non-zeros)")
2018-01-01 14:06:33 +01:00
end
2018-01-01 14:06:33 +01:00
return sparse(M)
end
sparsify{T}(U::AbstractArray{T}, tol=eps(T); verbose=false) = sparsify!(deepcopy(U), tol, verbose=verbose)
function transform(U::AbstractArray, V::AbstractArray; sparse=true)
2018-01-01 14:06:33 +01:00
if sparse
return sparsify!(U'*V*U)
else
return U'*V*U
end
2017-06-22 14:12:35 +02:00
end
A(data::OrbitData, π, t) = data.dims[π].*transform(data.Us[π], data.cnstr[t])
2017-06-22 14:12:35 +02:00
function constrLHS(m::JuMP.Model, data::OrbitData, t)
2018-01-01 14:06:33 +01:00
l = endof(data.Us)
lhs = @expression(m, sum(vecdot(A(data, π, t), data.Ps[π]) for π in 1:l))
return lhs
2017-06-22 14:12:35 +02:00
end
function constrLHS(m::JuMP.Model, cnstr, Us, Ust, dims, vars, eps=100*eps(1.0))
2018-01-01 14:06:33 +01:00
M = [PropertyT.sparsify!(dims[π].*Ust[π]*cnstr*Us[π], eps) for π in 1:endof(Us)]
return @expression(m, sum(vecdot(M[π], vars[π]) for π in 1:endof(Us)))
end
function addconstraints!(m::JuMP.Model, data::OrbitData, l::Int=length(data.laplacian); var::Symbol=)
2018-01-01 14:06:33 +01:00
λ = m[var]
Ust = [U' for U in data.Us]
idx = [π for π in 1:endof(data.Us) if size(data.Us[π],2) != 0]
for t in 1:l
if t % 100 == 0
print(t, ", ")
end
# lhs = constrLHS(m, data, t)
lhs = constrLHS(m, data.cnstr[t], data.Us[idx], Ust[idx], data.dims[idx], data.Ps[idx])
d, = data.laplacian[t], data.laplacianSq[t]
# if lhs == zero(lhs)
# if d == 0 && d² == 0
# info("Detected empty constraint")
# continue
# else
# warn("Adding unsatisfiable constraint!")
# end
# end
JuMP.@constraint(m, lhs == - λ*d)
end
println("")
2017-06-22 14:12:35 +02:00
end
function init_model(n, sizes)
2018-01-01 14:06:33 +01:00
m = JuMP.Model();
P = Vector{Array{JuMP.Variable,2}}(n)
2017-11-05 20:55:53 +01:00
2018-01-01 14:06:33 +01:00
for (k,s) in enumerate(sizes)
P[k] = JuMP.@variable(m, [i=1:s, j=1:s])
JuMP.@SDconstraint(m, P[k] >= 0.0)
end
2017-11-05 20:55:53 +01:00
2018-01-01 14:06:33 +01:00
JuMP.@variable(m, λ >= 0.0)
JuMP.@objective(m, Max, λ)
return m, P
2017-06-22 15:11:14 +02:00
end
function create_SDP_problem(sett::Settings)
2018-08-19 20:05:45 +02:00
info("Loading orbit data....")
@time SDP_problem, orb_data = OrbitData(sett);
2017-06-22 14:12:35 +02:00
2018-01-01 14:06:33 +01:00
if sett.upper_bound < Inf
λ = JuMP.getvariable(SDP_problem, )
JuMP.@constraint(SDP_problem, λ <= sett.upper_bound)
end
2017-06-22 14:12:35 +02:00
2018-01-01 14:06:33 +01:00
t = length(orb_data.laplacian)
2018-08-19 20:05:45 +02:00
info("Adding $t constraints ... ")
@time addconstraints!(SDP_problem, orb_data)
2017-06-22 14:12:35 +02:00
2018-01-01 14:06:33 +01:00
return SDP_problem, orb_data
2017-06-22 14:12:35 +02:00
end
2017-12-01 18:26:08 +01:00
function λandP(m::JuMP.Model, data::OrbitData, warmstart=true)
2018-01-01 14:06:33 +01:00
varλ = m[]
varP = data.Ps
λ, Ps = PropertyT.λandP(data.name, m, varλ, varP, warmstart)
return λ, Ps
2017-06-22 14:12:35 +02:00
end
function λandP(m::JuMP.Model, data::OrbitData, sett::Settings)
2018-08-19 20:05:45 +02:00
info("Solving SDP problem...")
@time λ, Ps = λandP(m, data, sett.warmstart)
2017-06-22 14:12:35 +02:00
2018-08-19 20:05:45 +02:00
info("Reconstructing P...")
2017-06-22 14:12:35 +02:00
2018-01-02 02:55:53 +01:00
preps = load_preps(filename(prepath(sett), :preps), sett.autS)
2017-08-27 19:06:17 +02:00
2018-08-19 20:05:45 +02:00
@time recP = reconstruct_sol(preps, data.Us, Ps, data.dims)
2017-06-22 14:12:35 +02:00
2018-01-01 23:57:03 +01:00
fname = filename(fullpath(sett), :P)
2018-01-01 14:06:33 +01:00
save(fname, "origP", Ps, "P", recP)
return λ, recP
2017-06-22 14:12:35 +02:00
end
2018-07-31 10:21:54 +02:00
function load_preps(fname::String, G::Group)
lded_preps = load(fname, "perms_d")
permG = PermutationGroup(length(first(lded_preps)))
@assert length(lded_preps) == order(G)
return Dict(k=>permG(v) for (k,v) in zip(elements(G), lded_preps))
end
function save_preps(fname::String, preps)
autS = parent(first(keys(preps)))
JLD.save(fname, "perms_d", [preps[elt].d for elt in elements(autS)])
end
2017-06-22 15:11:39 +02:00
function check_property_T(sett::Settings)
2017-06-22 14:12:35 +02:00
2018-01-02 03:19:57 +01:00
ex(s) = exists(filename(prepath(sett), s))
files_exists = ex.([:pm, , :Uπs, :orb, :preps])
if !all(files_exists)
2018-08-19 20:05:45 +02:00
compute_orbit_data(prepath(sett), sett.S, sett.autS, radius=sett.radius)
2018-01-02 03:19:57 +01:00
end
2018-01-01 14:06:33 +01:00
2018-01-01 23:57:03 +01:00
cond1 = exists(filename(fullpath(sett), ))
cond2 = exists(filename(fullpath(sett), :P))
if !sett.warmstart && cond1 && cond2
2018-01-25 21:39:06 +01:00
λ, P = λandP(fullpath(sett))
2018-01-01 14:06:33 +01:00
else
2018-08-19 20:05:45 +02:00
info("Creating SDP problem...")
2018-01-01 14:06:33 +01:00
SDP_problem, orb_data = create_SDP_problem(sett)
JuMP.setsolver(SDP_problem, sett.solver)
2018-08-19 20:05:45 +02:00
info(Base.repr(SDP_problem))
2018-01-01 14:06:33 +01:00
λ, P = λandP(SDP_problem, orb_data, sett)
end
2018-08-19 20:05:45 +02:00
info("λ = ")
info("sum(P) = $(sum(P))")
info("maximum(P) = $(maximum(P))")
info("minimum(P) = $(minimum(P))")
2018-01-01 14:06:33 +01:00
2018-01-02 03:22:46 +01:00
isapprox(eigvals(P), abs.(eigvals(P)), atol=sett.tol) ||
2018-01-01 14:06:33 +01:00
warn("The solution matrix doesn't seem to be positive definite!")
2018-08-19 20:05:45 +02:00
return interpret_results(sett.name, sett.S, sett.radius, λ, P)
2017-06-22 14:12:35 +02:00
end