2017-03-13 14:49:55 +01:00
|
|
|
|
using ProgressMeter
|
|
|
|
|
import Base: rationalize
|
|
|
|
|
|
2017-03-14 23:34:47 +01:00
|
|
|
|
using ValidatedNumerics
|
|
|
|
|
setrounding(Interval, :narrow)
|
|
|
|
|
setdisplay(:standard)
|
|
|
|
|
|
2017-03-13 14:49:55 +01:00
|
|
|
|
function EOI{T<:Number}(Δ::GroupAlgebraElement{T}, κ::T)
|
|
|
|
|
return Δ*Δ - κ*Δ
|
|
|
|
|
end
|
|
|
|
|
|
2017-03-14 16:40:35 +01:00
|
|
|
|
function algebra_square(vector, elt)
|
2017-03-13 14:49:55 +01:00
|
|
|
|
zzz = zeros(elt.coefficients)
|
|
|
|
|
zzz[1:length(vector)] = vector
|
|
|
|
|
# new_base_elt = GroupAlgebraElement(zzz, elt.product_matrix)
|
|
|
|
|
# return (new_base_elt*new_base_elt).coefficients
|
|
|
|
|
return GroupAlgebras.algebra_multiplication(zzz, zzz, elt.product_matrix)
|
|
|
|
|
end
|
|
|
|
|
|
2017-03-14 16:40:35 +01:00
|
|
|
|
function compute_SOS(sqrt_matrix, elt)
|
2017-03-13 14:49:55 +01:00
|
|
|
|
n = size(sqrt_matrix,2)
|
2017-03-14 16:40:35 +01:00
|
|
|
|
T = eltype(sqrt_matrix)
|
|
|
|
|
|
|
|
|
|
# result = zeros(T, length(elt.coefficients))
|
|
|
|
|
# for i in 1:n
|
|
|
|
|
# result += algebra_square(sqrt_matrix[:,i], elt)
|
|
|
|
|
# end
|
|
|
|
|
|
|
|
|
|
result = @parallel (+) for i in 1:n
|
|
|
|
|
PropertyT.algebra_square(sqrt_matrix[:,i], elt)
|
2017-03-13 14:49:55 +01:00
|
|
|
|
end
|
2017-03-14 16:40:35 +01:00
|
|
|
|
|
|
|
|
|
return GroupAlgebraElement(result, elt.product_matrix)
|
2017-03-13 14:49:55 +01:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
|
|
|
|
|
sqrt_corrected = similar(sqrt_matrix)
|
|
|
|
|
l = size(sqrt_matrix,2)
|
|
|
|
|
for i in 1:l
|
|
|
|
|
col = view(sqrt_matrix,:,i)
|
|
|
|
|
sqrt_corrected[:,i] = col - sum(col)//l
|
|
|
|
|
# @assert sum(sqrt_corrected[:,i]) == 0
|
|
|
|
|
end
|
|
|
|
|
return sqrt_corrected
|
|
|
|
|
end
|
|
|
|
|
|
2017-03-14 23:34:47 +01:00
|
|
|
|
import ValidatedNumerics.±
|
|
|
|
|
|
|
|
|
|
function (±){T<:Number}(X::AbstractArray{T}, tol::Real)
|
|
|
|
|
r{T}(x::T) = (x == zero(T)? @biginterval(0) : x ± tol)
|
|
|
|
|
return r.(X)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
(±)(X::GroupAlgebraElement, tol::Real) = GroupAlgebraElement(X.coefficients ± tol, X.product_matrix)
|
|
|
|
|
|
|
|
|
|
function Base.rationalize{T<:Integer, S<:Real}(::Type{T},
|
|
|
|
|
X::AbstractArray{S}; tol::Real=eps(eltype(X)))
|
|
|
|
|
r(x) = rationalize(T, x, tol=tol)
|
|
|
|
|
return r.(X)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
ℚ(x, tol::Real) = rationalize(BigInt, x, tol=tol)
|
2017-03-14 23:35:52 +01:00
|
|
|
|
|
|
|
|
|
function distance_to_cone{T<:Rational}(κ::T, sqrt_matrix::Array{T,2}, Δ::GroupAlgebraElement{T}; verbose=true, augmented=false)
|
|
|
|
|
SOS = compute_SOS(sqrt_matrix, Δ)
|
2017-03-13 14:49:55 +01:00
|
|
|
|
if augmented
|
|
|
|
|
epsilon = GroupAlgebras.ɛ(result)
|
2017-03-14 16:40:53 +01:00
|
|
|
|
@show epsilon
|
2017-03-13 14:49:55 +01:00
|
|
|
|
end
|
|
|
|
|
|
2017-03-14 23:35:52 +01:00
|
|
|
|
SOS_diff = EOI(Δ, κ) - SOS
|
2017-03-13 14:49:55 +01:00
|
|
|
|
eoi_SOS_L₁_dist = norm(SOS_diff,1)
|
|
|
|
|
|
|
|
|
|
if verbose
|
|
|
|
|
@show κ
|
|
|
|
|
ɛ_dist = GroupAlgebras.ɛ(SOS_diff)
|
2017-03-14 23:35:52 +01:00
|
|
|
|
L₁_dist = eoi_SOS_L₁_dist
|
|
|
|
|
@printf("ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) = %.10f\n", float(ɛ_dist))
|
|
|
|
|
@printf("‖Δ² - κΔ - ∑ξᵢ*ξᵢ‖₁ = %.10f\n", float(L₁_dist))
|
2017-03-13 14:49:55 +01:00
|
|
|
|
end
|
|
|
|
|
distance_to_cone = κ - 2^3*eoi_SOS_L₁_dist
|
|
|
|
|
return distance_to_cone
|
|
|
|
|
end
|
|
|
|
|
|
2017-03-14 23:35:52 +01:00
|
|
|
|
function distance_to_cone{T<:Rational, S<:Interval}(κ::T, sqrt_matrix::Array{S,2}, Δ::GroupAlgebraElement{T}; verbose=true)
|
|
|
|
|
SOS = compute_SOS(sqrt_matrix, Δ)
|
|
|
|
|
verbose && println("ɛ(∑ξᵢ*ξᵢ) ∈ $(GroupAlgebras.ɛ(SOS))")
|
|
|
|
|
|
|
|
|
|
SOS_diff = EOI(Δ, κ) - SOS
|
|
|
|
|
eoi_SOS_L₁_dist = norm(SOS_diff,1)
|
2017-03-13 14:49:55 +01:00
|
|
|
|
|
2017-03-14 23:35:52 +01:00
|
|
|
|
if verbose
|
|
|
|
|
@show κ
|
|
|
|
|
ɛ_dist = GroupAlgebras.ɛ(SOS_diff)
|
2017-03-13 14:49:55 +01:00
|
|
|
|
|
2017-03-14 23:35:52 +01:00
|
|
|
|
println("ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) ∈ $(ɛ_dist)")
|
|
|
|
|
println("‖Δ² - κΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(eoi_SOS_L₁_dist)")
|
|
|
|
|
end
|
|
|
|
|
distance_to_cone = κ - 2^3*eoi_SOS_L₁_dist
|
|
|
|
|
return distance_to_cone
|
2017-03-13 14:49:55 +01:00
|
|
|
|
end
|
|
|
|
|
|
2017-03-14 23:35:52 +01:00
|
|
|
|
function distance_to_cone{T<:AbstractFloat}(κ::T, sqrt_matrix::Array{T,2}, Δ::GroupAlgebraElement{T}; verbose=true)
|
|
|
|
|
SOS = compute_SOS(sqrt_matrix, Δ)
|
|
|
|
|
|
|
|
|
|
SOS_diff = EOI(Δ, κ) - SOS
|
|
|
|
|
eoi_SOS_L₁_dist = norm(SOS_diff,1)
|
|
|
|
|
|
|
|
|
|
if verbose
|
|
|
|
|
println("κ = $κ (≈$(float(κ)))")
|
|
|
|
|
ɛ_dist = GroupAlgebras.ɛ(SOS_diff)
|
|
|
|
|
@printf("ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) ≈ %.10f\n", ɛ_dist)
|
|
|
|
|
@printf("‖Δ² - κΔ - ∑ξᵢ*ξᵢ‖₁ ≈ %.10f\n", eoi_SOS_L₁_dist)
|
|
|
|
|
end
|
|
|
|
|
distance_to_cone = κ - 2^3*eoi_SOS_L₁_dist
|
|
|
|
|
return distance_to_cone
|
|
|
|
|
end
|
2017-03-13 14:49:55 +01:00
|
|
|
|
|
2017-03-14 23:35:52 +01:00
|
|
|
|
function check_distance_to_positive_cone(Δ::GroupAlgebraElement, κ, A;
|
2017-03-13 14:49:55 +01:00
|
|
|
|
tol=1e-7, verbose=true, rational=false)
|
|
|
|
|
|
|
|
|
|
isapprox(eigvals(A), abs(eigvals(A)), atol=tol) ||
|
|
|
|
|
warn("The solution matrix doesn't seem to be positive definite!")
|
|
|
|
|
@assert A == Symmetric(A)
|
|
|
|
|
A_sqrt = real(sqrtm(A))
|
2017-03-14 23:35:52 +01:00
|
|
|
|
|
2017-03-14 16:40:53 +01:00
|
|
|
|
println("-------------------------------------------------------------")
|
|
|
|
|
println("")
|
|
|
|
|
println("Checking in floating-point arithmetic...")
|
2017-03-14 23:35:52 +01:00
|
|
|
|
@time fp_distance = distance_to_cone(κ, A_sqrt, Δ, verbose=verbose)
|
|
|
|
|
println("Floating point distance (to positive cone)\n ≈ $(Float64(trunc(fp_distance,10)))")
|
2017-03-13 14:49:55 +01:00
|
|
|
|
println("-------------------------------------------------------------")
|
|
|
|
|
println("")
|
|
|
|
|
|
2017-03-14 16:40:53 +01:00
|
|
|
|
println("Projecting columns of rationalized A_sqrt to the augmentation ideal...")
|
|
|
|
|
δ = eps(κ)
|
|
|
|
|
A_sqrt_ℚ = ℚ(A_sqrt, δ)
|
2017-03-13 14:49:55 +01:00
|
|
|
|
A_sqrt_ℚ_aug = correct_to_augmentation_ideal(A_sqrt_ℚ)
|
2017-03-14 16:40:53 +01:00
|
|
|
|
κ_ℚ = ℚ(κ, δ)
|
|
|
|
|
Δ_ℚ = ℚ(Δ, δ)
|
2017-03-13 14:49:55 +01:00
|
|
|
|
|
2017-03-14 16:40:53 +01:00
|
|
|
|
println("Checking in interval arithmetic")
|
|
|
|
|
A_sqrt_ℚ_augᴵ = A_sqrt_ℚ_aug ± δ
|
2017-03-14 23:35:52 +01:00
|
|
|
|
@time Interval_dist_to_Σ² = distance_to_cone(κ_ℚ, A_sqrt_ℚ_augᴵ, Δ_ℚ, verbose=verbose)
|
2017-03-14 16:40:53 +01:00
|
|
|
|
println("The Augmentation-projected actual distance (to positive cone) belongs to \n$Interval_dist_to_Σ²")
|
2017-03-13 14:49:55 +01:00
|
|
|
|
println("-------------------------------------------------------------")
|
|
|
|
|
println("")
|
|
|
|
|
|
2017-03-14 23:35:52 +01:00
|
|
|
|
if Interval_dist_to_Σ².lo ≤ 0
|
2017-03-13 14:49:55 +01:00
|
|
|
|
return Interval_dist_to_Σ².lo
|
|
|
|
|
else
|
|
|
|
|
println("Checking Projected SOS decomposition in exact rational arithmetic...")
|
|
|
|
|
@time ℚ_dist_to_Σ² = check_solution(κ_ℚ, A_sqrt_ℚ_aug, Δ_ℚ, verbose=verbose, augmented=true)
|
|
|
|
|
@assert isa(ℚ_dist_to_Σ², Rational)
|
2017-03-14 16:40:53 +01:00
|
|
|
|
println("Augmentation-projected rational distance (to positive cone)\n ≥ $(Float64(trunc(ℚ_dist_to_Σ²,8)))")
|
2017-03-13 14:49:55 +01:00
|
|
|
|
println("-------------------------------------------------------------")
|
|
|
|
|
return ℚ_dist_to_Σ²
|
|
|
|
|
end
|
|
|
|
|
end
|