1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-19 07:20:28 +01:00
PropertyT.jl/src/gradings.jl

70 lines
2.3 KiB
Julia
Raw Normal View History

2022-11-07 16:13:39 +01:00
## something about roots
Roots.Root(e::MatrixGroups.ElementaryMatrix{N}) where {N} =
Roots.𝕖(N, e.i) - Roots.𝕖(N, e.j)
function Roots.Root(s::MatrixGroups.ElementarySymplectic{N}) where {N}
if s.symbol === :A
return Roots.𝕖(N ÷ 2, s.i) - Roots.𝕖(N ÷ 2, s.j)
else#if s.symbol === :B
n = N ÷ 2
i, j = ifelse(s.i <= n, s.i, s.i - n), ifelse(s.j <= n, s.j, s.j - n)
return (-1)^(s.i > s.j) * (Roots.𝕖(n, i) + Roots.𝕖(n, j))
end
end
grading(s::MatrixGroups.ElementarySymplectic) = Roots.Root(s)
grading(e::MatrixGroups.ElementaryMatrix) = Roots.Root(e)
function grading(g::FPGroupElement)
if length(word(g)) == 1
A = alphabet(parent(g))
return grading(A[first(word(g))])
else
throw("Grading is implemented only for generators")
end
end
_groupby(f, iter::AbstractVector) = _groupby(f.(iter), iter)
function _groupby(keys::AbstractVector{K}, vals::AbstractVector{V}) where {K,V}
@assert length(keys) == length(vals)
d = Dict(k => V[] for k in keys)
for (k, v) in zip(keys, vals)
push!(d[k], v)
end
return d
end
2022-11-07 17:01:06 +01:00
function laplacians(RG::StarAlgebras.StarAlgebra, S, grading)
2022-11-07 16:13:39 +01:00
d = _groupby(grading, S)
Δs = Dict(α => RG(length(Sα)) - sum(RG(s) for s in Sα) for (α, Sα) in d)
return Δs
end
function Adj(rootsystem::AbstractDict, subtype::Symbol)
roots = let W = mapreduce(collect, union, keys(rootsystem))
W = union!(W, -1 .* W)
end
return reduce(
+,
(
Δα * Δβ for (α, Δα) in rootsystem for (β, Δβ) in rootsystem if
2022-11-07 17:01:06 +01:00
Roots.classify_sub_root_system(
2022-11-07 16:13:39 +01:00
roots,
first(α),
first(β),
) == subtype
),
init=zero(first(values(rootsystem))),
)
end
function level(rootsystem, level::Integer)
1 level 4 || throw("level is implemented only for i ∈{1,2,3,4}")
level == 1 && return Adj(rootsystem, :C₁) # always positive
level == 2 && return Adj(rootsystem, :A₁) + Adj(rootsystem, Symbol("C₁×C₁")) + Adj(rootsystem, :C₂) # C₂ is not positive
level == 3 && return Adj(rootsystem, :A₂) + Adj(rootsystem, Symbol("A₁×C₁"))
level == 4 && return Adj(rootsystem, Symbol("A₁×A₁")) # positive
end