1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-29 09:45:27 +01:00

Merge pull request #10 from kalmarek/mk/perf_tweaks

Various perf tweaks including moving to sparse matrices where possible
This commit is contained in:
Marek Kaluba 2022-12-02 14:21:24 +01:00 committed by GitHub
commit 0127d05594
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
25 changed files with 604 additions and 409 deletions

View File

@ -1 +0,0 @@
comment: false

4
.gitignore vendored
View File

@ -2,7 +2,3 @@
*.jl.*.cov
*.jl.mem
Manifest.toml
test/SL*
test/oSL*
test/SAut*
test/oSAut*

View File

@ -1,28 +0,0 @@
# Documentation: http://docs.travis-ci.com/user/languages/julia/
language: julia
os:
- linux
- osx
julia:
- 1.1
- 1.2
- 1.3
- nightly
notifications:
email: true
matrix:
fast_finish: true
allow_failures:
- julia: nightly
- os: osx
addons:
apt:
packages:
- hdf5-tools
## uncomment the following lines to override the default test
# script:
# - julia -e 'using Pkg; Pkg.build(); Pkg.test(coverage=true);'
codecov: true

View File

@ -8,6 +8,7 @@ Groups = "5d8bd718-bd84-11e8-3b40-ad14f4a32557"
IntervalArithmetic = "d1acc4aa-44c8-5952-acd4-ba5d80a2a253"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
ProgressMeter = "92933f4c-e287-5a05-a399-4b506db050ca"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
SymbolicWedderburn = "858aa9a9-4c7c-4c62-b466-2421203962a2"
@ -17,9 +18,10 @@ COSMO = "0.8"
Groups = "0.7"
IntervalArithmetic = "0.20"
JuMP = "1.3"
ProgressMeter = "1.7"
SCS = "1.1.0"
StaticArrays = "1"
SymbolicWedderburn = "0.3.1"
SymbolicWedderburn = "0.3.2"
julia = "1.6"
[extras]

View File

@ -83,7 +83,10 @@ julia> include("test/optimizers.jl");
Now we have everything what we need to solve the problem!
```julia
julia> status, warmstart = PropertyT.solve(opt_problem, scs_optimizer(max_iters=5_000, accel=50, alpha=1.9));
julia> status, warmstart = PropertyT.solve(
opt_problem,
scs_optimizer(max_iters=5_000, accel=50, alpha=1.9),
);
------------------------------------------------------------------
SCS v3.2.1 - Splitting Conic Solver
(c) Brendan O'Donoghue, Stanford University, 2012
@ -119,8 +122,12 @@ julia> status
ALMOST_OPTIMAL::TerminationStatusCode = 7
```
The solver didn't manage to solve the problem but it got quite close! (duality gap is ~`1.63e-6`). Let's try once again this time warmstarting the solver:
```
julia> status, warmstart = PropertyT.solve(opt_problem, scs_optimizer(max_iters=10_000, accel=50, alpha=1.9), warmstart);
```julia
julia> status, warmstart = PropertyT.solve(
opt_problem,
scs_optimizer(max_iters=10_000, accel=50, alpha=1.9),
warmstart,
);
------------------------------------------------------------------
SCS v3.2.1 - Splitting Conic Solver
(c) Brendan O'Donoghue, Stanford University, 2012

View File

@ -1,34 +0,0 @@
environment:
matrix:
- JULIAVERSION: "julialang/bin/winnt/x86/0.5/julia-0.5-latest-win32.exe"
- JULIAVERSION: "julialang/bin/winnt/x64/0.5/julia-0.5-latest-win64.exe"
- JULIAVERSION: "julianightlies/bin/winnt/x86/julia-latest-win32.exe"
- JULIAVERSION: "julianightlies/bin/winnt/x64/julia-latest-win64.exe"
branches:
only:
- master
- /release-.*/
notifications:
- provider: Email
on_build_success: false
on_build_failure: false
on_build_status_changed: false
install:
# Download most recent Julia Windows binary
- ps: (new-object net.webclient).DownloadFile(
$("http://s3.amazonaws.com/"+$env:JULIAVERSION),
"C:\projects\julia-binary.exe")
# Run installer silently, output to C:\projects\julia
- C:\projects\julia-binary.exe /S /D=C:\projects\julia
build_script:
# Need to convert from shallow to complete for Pkg.clone to work
- IF EXIST .git\shallow (git fetch --unshallow)
- C:\projects\julia\bin\julia -e "versioninfo();
Pkg.clone(pwd(), \"Property(T)\"); Pkg.build(\"Property(T)\")"
test_script:
- C:\projects\julia\bin\julia -e "Pkg.test(\"Property(T)\")"

80
scripts/SpN_Adj.jl Normal file
View File

@ -0,0 +1,80 @@
using LinearAlgebra
BLAS.set_num_threads(8)
ENV["OMP_NUM_THREADS"] = 1
using Groups
import Groups.MatrixGroups
include(joinpath(@__DIR__, "../test/optimizers.jl"))
using PropertyT
using PropertyT.SymbolicWedderburn
using PropertyT.PermutationGroups
using PropertyT.StarAlgebras
include(joinpath(@__DIR__, "argparse.jl"))
include(joinpath(@__DIR__, "utils.jl"))
const N = parsed_args["N"]
const HALFRADIUS = parsed_args["halfradius"]
const UPPER_BOUND = parsed_args["upper_bound"]
const GENUS = 2N
G = MatrixGroups.SymplecticGroup{GENUS}(Int8)
RG, S, sizes =
@time PropertyT.group_algebra(G, halfradius=HALFRADIUS, twisted=true)
wd = let RG = RG, N = N
G = StarAlgebras.object(RG)
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
Σ = Groups.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
# Σ = P
act = PropertyT.action_by_conjugation(G, Σ)
@info "Computing WedderburnDecomposition"
wdfl = @time SymbolicWedderburn.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[HALFRADIUS]]),
)
end
Δ = RG(length(S)) - sum(RG(s) for s in S)
Δs = PropertyT.laplacians(
RG,
S,
x -> (gx = PropertyT.grading(x); Set([gx, -gx])),
)
# elt = Δ^2
elt = PropertyT.Adj(Δs, :C₂)
unit = Δ
@time model, varP = PropertyT.sos_problem_primal(
elt,
unit,
wd,
upper_bound=UPPER_BOUND,
augmented=true,
show_progress=true
)
solve_in_loop(
model,
wd,
varP,
logdir="./log/Sp($N,Z)/r=$HALFRADIUS/Adj_C₂-InfΔ",
optimizer=cosmo_optimizer(
eps=1e-10,
max_iters=20_000,
accel=50,
alpha=1.95,
),
data=(elt=elt, unit=unit, halfradius=HALFRADIUS)
)

19
scripts/argparse.jl Normal file
View File

@ -0,0 +1,19 @@
using ArgParse
args_settings = ArgParseSettings()
@add_arg_table! args_settings begin
"-N"
help = "the degree/genus/etc. parameter for a group"
arg_type = Int
default = 3
"--halfradius", "-R"
help = "the halfradius on which perform the sum of squares decomposition"
arg_type = Int
default = 2
"--upper_bound", "-u"
help = "set upper bound for the optimization problem to speed-up the convergence"
arg_type = Float64
default = Inf
end
parsed_args = parse_args(ARGS, args_settings)

85
scripts/utils.jl Normal file
View File

@ -0,0 +1,85 @@
using Dates
using Serialization
using Logging
import JuMP
function get_solution(model)
λ = JuMP.value(model[])
Q = real.(sqrt(JuMP.value.(model[:P])))
solution = Dict( => λ, :Q => Q)
return solution
end
function get_solution(model, wd, varP; logdir)
λ = JuMP.value(model[])
Qs = [real.(sqrt(JuMP.value.(P))) for P in varP]
Q = PropertyT.reconstruct(Qs, wd)
solution = Dict( => λ, :Q => Q)
return solution
end
function solve_in_loop(model::JuMP.Model, args...; logdir, optimizer, data)
@info "logging to $logdir"
status = JuMP.UNKNOWN_RESULT_STATUS
warm = try
solution = deserialize(joinpath(logdir, "solution.sjl"))
warm = solution[:warm]
@info "trying to warm-start model with λ=$(solution[])..."
warm
catch
nothing
end
old_lambda = 0.0
while status != JuMP.OPTIMAL
date = now()
log_file = joinpath(logdir, "solver_$date.log")
@info "Current logfile is $log_file."
isdir(dirname(log_file)) || mkpath(dirname(log_file))
λ, flag, certified_λ = let
# logstream = current_logger().logger.stream
# v = @ccall setvbuf(logstream.handle::Ptr{Cvoid}, C_NULL::Ptr{Cvoid}, 1::Cint, 0::Cint)::Cint
# @warn v
status, warm = @time PropertyT.solve(log_file, model, optimizer, warm)
solution = get_solution(model, args...; logdir=logdir)
solution[:warm] = warm
serialize(joinpath(logdir, "solution_$date.sjl"), solution)
serialize(joinpath(logdir, "solution.sjl"), solution)
flag, λ_cert = open(log_file, append=true) do io
with_logger(SimpleLogger(io)) do
PropertyT.certify_solution(
data.elt,
data.unit,
solution[],
solution[:Q],
halfradius=data.halfradius,
)
end
end
solution[], flag, λ_cert
end
if flag == true && certified_λ 0
@info "Certification done with λ = $certified_λ"
return certified_λ
else
rel_change = abs(certified_λ - old_lambda) / (abs(certified_λ) + abs(old_lambda))
@info "Certification failed with λ = " certified_λ rel_change
end
old_lambda = certified_λ
if rel_change < 1e-9
@info "No progress detected, breaking"
break
end
end
return status == JuMP.OPTIMAL ? old_lambda : NaN
end

View File

@ -1,4 +1,3 @@
__precompile__()
module PropertyT
using LinearAlgebra
@ -15,6 +14,8 @@ import SymbolicWedderburn.PermutationGroups
include("constraint_matrix.jl")
include("sos_sdps.jl")
include("solve.jl")
include("reconstruct.jl")
include("certify.jl")
include("sqadjop.jl")
@ -28,7 +29,7 @@ include("actions/actions.jl")
function group_algebra(G::Groups.Group, S=gens(G); halfradius::Integer, twisted::Bool)
S = union!(S, inv.(S))
@info "generating wl-metric ball of radius $(2halfradius)"
@time E, sizes = Groups.wlmetric_ball_serial(S, radius=2halfradius)
@time E, sizes = Groups.wlmetric_ball(S, radius=2halfradius)
@info "sizes = $(sizes)"
@info "computing the *-algebra structure for G"
@time RG = StarAlgebras.StarAlgebra{twisted}(

View File

@ -4,6 +4,7 @@ StarAlgebras.star(g::Groups.GroupElement) = inv(g)
include("alphabet_permutation.jl")
include("sln_conjugation.jl")
include("spn_conjugation.jl")
include("autfn_conjugation.jl")
function SymbolicWedderburn.action(

View File

@ -1,26 +1,43 @@
## Particular definitions for actions on Sp(n,)
function _conj(
t::MatrixGroups.ElementarySymplectic{N,T},
s::MatrixGroups.ElementarySymplectic{N,T},
σ::PermutationGroups.AbstractPerm,
) where {N,T}
@assert iseven(N)
@assert degree(σ) == N ÷ 2 "Got degree = $(degree(σ)); N = $N"
i = mod1(t.i, N ÷ 2)
ib = i == t.i ? 0 : N ÷ 2
j = mod1(t.j, N ÷ 2)
jb = j == t.j ? 0 : N ÷ 2
return MatrixGroups.ElementarySymplectic{N}(t.symbol, i^inv(σ) + ib, j^inv(σ) + jb, t.val)
@assert PermutationGroups.degree(σ) == N ÷ 2 "Got degree = $(PermutationGroups.degree(σ)); N = $N"
n = N ÷ 2
@assert 1 s.i N
@assert 1 s.j N
if s.symbol == :A
@assert 1 s.i n
@assert 1 s.j n
i = s.i^inv(σ)
j = s.j^inv(σ)
else
@assert s.symbol == :B
@assert xor(s.i > n, s.j > n)
if s.i > n
i = (s.i - n)^inv(σ) + n
j = s.j^inv(σ)
elseif s.j > n
i = s.i^inv(σ)
j = (s.j - n)^inv(σ) + n
end
end
return MatrixGroups.ElementarySymplectic{N}(s.symbol, i, j, s.val)
end
function _conj(
t::MatrixGroups.ElementarySymplectic{N,T},
s::MatrixGroups.ElementarySymplectic{N,T},
x::Groups.Constructions.DirectPowerElement,
) where {N,T}
@assert Groups.order(Int, parent(x).group) == 2
@assert iseven(N)
just_one_flips = xor(isone(x.elts[mod1(t.i, N ÷ 2)]), isone(x.elts[mod1(t.j, N ÷ 2)]))
return ifelse(just_one_flips, inv(t), t)
n = N ÷ 2
i, j = ifelse(s.i <= n, s.i, s.i - n), ifelse(s.j <= n, s.j, s.j - n)
just_one_flips = xor(isone(x.elts[i]), isone(x.elts[j]))
return ifelse(just_one_flips, inv(s), s)
end
action_by_conjugation(sln::Groups.MatrixGroups.SymplecticGroup, Σ::Groups.Group) =

View File

@ -5,80 +5,50 @@ function augment_columns!(Q::AbstractMatrix)
return Q
end
function _fma_SOS_thr!(
result::AbstractVector{T},
mstructure::AbstractMatrix{<:Integer},
Q::AbstractMatrix{T},
acc_matrix=zeros(T, size(mstructure)...),
) where {T}
function __sos_via_sqr!(
res::StarAlgebras.AlgebraElement,
P::AbstractMatrix;
augmented::Bool
)
StarAlgebras.zero!(res)
A = parent(res)
b = basis(A)
@assert size(A.mstructure) == size(P)
e = b[one(b[1])]
s1, s2 = size(mstructure)
@inbounds for k = 1:s2
let k = k, s1 = s1, s2 = s2, Q = Q, acc_matrix = acc_matrix
Threads.@threads for j = 1:s2
for i = 1:s1
@inbounds acc_matrix[i, j] =
muladd(Q[i, k], Q[j, k], acc_matrix[i, j])
end
for i in axes(A.mstructure, 1)
x = StarAlgebras._istwisted(A.mstructure) ? StarAlgebras.star(b[i]) : b[i]
for j in axes(A.mstructure, 2)
p = P[i, j]
xy = b[A.mstructure[i, j]]
# either result += P[x,y]*(x*y)
res[xy] += p
if augmented
# or result += P[x,y]*(1-x)*(1-y) == P[x,y]*(2-x-y+xy)
y = b[j]
res[e] += p
res[x] -= p
res[y] -= p
end
end
end
@inbounds for j = 1:s2
for i = 1:s1
result[mstructure[i, j]] += acc_matrix[i, j]
end
end
return result
return res
end
function _cnstr_sos!(res::StarAlgebras.AlgebraElement, Q::AbstractMatrix, cnstrs)
function __sos_via_cnstr!(res::StarAlgebras.AlgebraElement, ::AbstractMatrix, cnstrs)
StarAlgebras.zero!(res)
= Q' * Q
for (g, A_g) in cnstrs
res[g] = dot(A_g, )
end
return res
end
function _augmented_sos!(res::StarAlgebras.AlgebraElement, Q::AbstractMatrix)
A = parent(res)
StarAlgebras.zero!(res)
= Q' * Q
N = LinearAlgebra.checksquare(A.mstructure)
augmented_basis = [A(1) - A(b) for b in @view basis(A)[1:N]]
tmp = zero(res)
for (j, y) in enumerate(augmented_basis)
for (i, x) in enumerate(augmented_basis)
# res += Q²[i, j] * x * y
StarAlgebras.mul!(tmp, x, y)
StarAlgebras.mul!(tmp, tmp, [i, j])
StarAlgebras.add!(res, res, tmp)
end
end
return res
end
function compute_sos(A::StarAlgebras.StarAlgebra, Q::AbstractMatrix; augmented::Bool)
if augmented
z = zeros(eltype(Q), length(basis(A)))
res = StarAlgebras.AlgebraElement(z, A)
return _augmented_sos!(res, Q)
cnstrs = constraints(basis(A), A.mstructure; augmented=true)
return _cnstr_sos!(res, Q, cnstrs)
else
@assert size(A.mstructure) == size(Q)
z = zeros(eltype(Q), length(basis(A)))
_fma_SOS_thr!(z, A.mstructure, Q)
return StarAlgebras.AlgebraElement(z, A)
end
= Q' * Q
res = StarAlgebras.AlgebraElement(zeros(eltype(), length(basis(A))), A)
res = __sos_via_sqr!(res, , augmented=augmented)
return res
end
function sufficient_λ(residual::StarAlgebras.AlgebraElement, λ; halfradius)
@ -159,7 +129,7 @@ function certify_solution(
true, compute_sos(parent(elt), Q_int, augmented=augmented)
end
@info "Checking in $(eltype(sos_int)) arithmetic with" λ
@info "Checking in $(eltype(sos_int)) arithmetic with" λ_int
λ_certified =
sufficient_λ(elt, orderunit, λ_int, sos_int, halfradius=halfradius)

View File

@ -6,7 +6,8 @@ Roots.Root(e::MatrixGroups.ElementaryMatrix{N}) where {N} =
function Roots.Root(s::MatrixGroups.ElementarySymplectic{N}) where {N}
if s.symbol === :A
return Roots.𝕖(N ÷ 2, s.i) - Roots.𝕖(N ÷ 2, s.j)
else#if s.symbol === :B
else
@assert s.symbol === :B
n = N ÷ 2
i, j = ifelse(s.i <= n, s.i, s.i - n), ifelse(s.j <= n, s.j, s.j - n)
return (-1)^(s.i > s.j) * (Roots.𝕖(n, i) + Roots.𝕖(n, j))

69
src/reconstruct.jl Normal file
View File

@ -0,0 +1,69 @@
__outer_dim(wd::WedderburnDecomposition) = size(first(direct_summands(wd)), 2)
function __group_of(wd::WedderburnDecomposition)
# this is veeeery hacky... ;)
return parent(first(keys(wd.hom.cache)))
end
function reconstruct(
Ms::AbstractVector{<:AbstractMatrix},
wbdec::WedderburnDecomposition;
atol=eps(real(eltype(wbdec))) * 10__outer_dim(wbdec)
)
n = __outer_dim(wbdec)
res = sum(zip(Ms, SymbolicWedderburn.direct_summands(wbdec))) do (M, ds)
res = similar(M, n, n)
reconstruct!(res, M, ds, __group_of(wbdec), wbdec.hom, atol=atol)
end
return res
end
function reconstruct!(
res::AbstractMatrix,
M::AbstractMatrix,
ds::SymbolicWedderburn.DirectSummand,
G,
hom;
atol=eps(real(eltype(ds))) * 10max(size(res)...)
)
res .= zero(eltype(res))
U = SymbolicWedderburn.image_basis(ds)
d = SymbolicWedderburn.degree(ds)
tmp = (U' * M * U) .* d
res = average!(res, tmp, G, hom)
if eltype(res) <: AbstractFloat
__droptol!(res, atol) # TODO: is this really necessary?!
end
return res
end
function __droptol!(M::AbstractMatrix, tol)
for i in eachindex(M)
if abs(M[i]) < tol
M[i] = zero(M[i])
end
end
return M
end
# implement average! for other actions when needed
function average!(
res::AbstractMatrix,
M::AbstractMatrix,
G::Groups.Group,
hom::SymbolicWedderburn.InducedActionHomomorphism{<:SymbolicWedderburn.ByPermutations}
)
@assert size(M) == size(res)
for g in G
gext = SymbolicWedderburn.induce(hom, g)
Threads.@threads for c in axes(res, 2)
for r in axes(res, 1)
res[r, c] += M[r^gext, c^gext]
end
end
end
o = Groups.order(Int, G)
res ./= o
return res
end

View File

@ -48,10 +48,8 @@ function isorthogonal(α::AbstractRoot{N}, β::AbstractRoot{M}) where {N,M}
end
function _positive_direction(α::Root{N}) where {N}
last = -1 / 2^(N - 1)
return Root{N,Float64}(
SVector(ntuple(i -> ifelse(i == N, last, (2)^-i), N)),
)
v = α.coord + 1 / (N * 100) * rand(N)
return Root{N,Float64}(v / norm(v, 2))
end
function positive(roots::AbstractVector{<:Root{N}}) where {N}

63
src/solve.jl Normal file
View File

@ -0,0 +1,63 @@
## Low-level solve
setwarmstart!(model::JuMP.Model, ::Nothing) = model
function setwarmstart!(model::JuMP.Model, warmstart)
constraint_map = Dict(
ct => JuMP.all_constraints(model, ct...) for
ct in JuMP.list_of_constraint_types(model)
)
JuMP.set_start_value.(JuMP.all_variables(model), warmstart.primal)
for (ct, idx) in pairs(constraint_map)
JuMP.set_start_value.(idx, warmstart.slack[ct])
JuMP.set_dual_start_value.(idx, warmstart.dual[ct])
end
return model
end
function getwarmstart(model::JuMP.Model)
constraint_map = Dict(
ct => JuMP.all_constraints(model, ct...) for
ct in JuMP.list_of_constraint_types(model)
)
primal = value.(JuMP.all_variables(model))
slack = Dict(k => value.(v) for (k, v) in constraint_map)
duals = Dict(k => JuMP.dual.(v) for (k, v) in constraint_map)
return (primal=primal, dual=duals, slack=slack)
end
function solve(m::JuMP.Model, optimizer, warmstart=nothing)
JuMP.set_optimizer(m, optimizer)
MOIU.attach_optimizer(m)
m = setwarmstart!(m, warmstart)
JuMP.optimize!(m)
status = JuMP.termination_status(m)
return status, getwarmstart(m)
end
function solve(solverlog::String, m::JuMP.Model, optimizer, warmstart=nothing)
isdir(dirname(solverlog)) || mkpath(dirname(solverlog))
Base.flush(Base.stdout)
Base.Libc.flush_cstdio()
status, warmstart = open(solverlog, "a+") do logfile
redirect_stdout(logfile) do
status, warmstart = solve(m, optimizer, warmstart)
Base.Libc.flush_cstdio()
status, warmstart
end
end
return status, warmstart
end

View File

@ -160,13 +160,39 @@ sos_problem_primal(
kwargs...
) = sos_problem_primal(elt, zero(elt), wedderburn; kwargs...)
function __fast_recursive_dot!(
res::JuMP.AffExpr,
Ps::AbstractArray{<:AbstractMatrix{<:JuMP.VariableRef}},
Ms::AbstractArray{<:AbstractSparseMatrix};
)
@assert length(Ps) == length(Ms)
for (A, P) in zip(Ms, Ps)
iszero(Ms) && continue
rows = rowvals(A)
vals = nonzeros(A)
for cidx in axes(A, 2)
for i in nzrange(A, cidx)
ridx = rows[i]
val = vals[i]
JuMP.add_to_expression!(res, P[ridx, cidx], val)
end
end
end
return res
end
import ProgressMeter
__show_itrs(n, total) = () -> [(Symbol("constraint"), "$n/$total")]
function sos_problem_primal(
elt::StarAlgebras.AlgebraElement,
orderunit::StarAlgebras.AlgebraElement,
wedderburn::WedderburnDecomposition;
upper_bound=Inf,
augmented=iszero(StarAlgebras.aug(elt)) && iszero(StarAlgebras.aug(orderunit)),
check_orthogonality=true
check_orthogonality=true,
show_progress=false
)
@assert parent(elt) === parent(orderunit)
@ -194,15 +220,14 @@ function sos_problem_primal(
P = map(direct_summands(wedderburn)) do ds
dim = size(ds, 1)
P = JuMP.@variable(model, [1:dim, 1:dim], Symmetric)
@constraint(model, P in PSDCone())
JuMP.@constraint(model, P in PSDCone())
P
end
begin # preallocating
T = eltype(wedderburn)
M = zeros.(T, size.(P))
Ms = [spzeros.(T, size(p)...) for p in P]
M_orb = zeros(T, size(parent(elt).mstructure)...)
tmps = SymbolicWedderburn._tmps(wedderburn)
end
X = convert(Vector{T}, StarAlgebras.coeffs(elt))
@ -211,142 +236,39 @@ function sos_problem_primal(
# defining constraints based on the multiplicative structure
cnstrs = constraints(parent(elt), augmented=augmented, twisted=true)
@info "Adding $(length(invariant_vectors(wedderburn))) constraints"
prog = ProgressMeter.Progress(
length(invariant_vectors(wedderburn)),
dt=1,
desc="Adding constraints... ",
enabled=show_progress,
barlen=60,
showspeed=true
)
for (i, iv) in enumerate(invariant_vectors(wedderburn))
ProgressMeter.next!(prog, showvalues=__show_itrs(i, prog.n))
for iv in invariant_vectors(wedderburn)
x = dot(X, iv)
u = dot(U, iv)
M_orb = invariant_constraint!(M_orb, basis(parent(elt)), cnstrs, iv)
Ms = SymbolicWedderburn.diagonalize!(Ms, M_orb, wedderburn)
SparseArrays.droptol!.(Ms, 10 * eps(T) * max(size(M_orb)...))
M = SymbolicWedderburn.diagonalize!(M, M_orb, wedderburn, tmps)
SymbolicWedderburn.zerotol!.(M, atol=1e-12)
M_dot_P = sum(dot(M[π], P[π]) for π in eachindex(M) if !iszero(M[π]))
# @info [nnz(m) / length(m) for m in Ms]
if feasibility_problem
JuMP.@constraint(model, x == M_dot_P)
JuMP.@constraint(
model,
x == __fast_recursive_dot!(JuMP.AffExpr(), P, Ms)
)
else
JuMP.@constraint(model, x - λ * u == M_dot_P)
JuMP.@constraint(
model,
x - λ * u == __fast_recursive_dot!(JuMP.AffExpr(), P, Ms)
)
end
end
ProgressMeter.finish!(prog)
return model, P
end
function reconstruct(Ps, wd::WedderburnDecomposition)
N = size(first(direct_summands(wd)), 2)
P = zeros(eltype(wd), N, N)
return reconstruct!(P, Ps, wd)
end
function group_of(wd::WedderburnDecomposition)
# this is veeeery hacky... ;)
return parent(first(keys(wd.hom.cache)))
end
# TODO: move to SymbolicWedderburn
SymbolicWedderburn.action(wd::WedderburnDecomposition) =
SymbolicWedderburn.action(wd.hom)
function reconstruct!(
res::AbstractMatrix,
Ps,
wedderburn::WedderburnDecomposition,
)
G = group_of(wedderburn)
act = SymbolicWedderburn.action(wedderburn)
@assert act isa SymbolicWedderburn.ByPermutations
for (π, ds) in pairs(direct_summands(wedderburn))
= SymbolicWedderburn.image_basis(ds)
# LinearAlgebra.mul!(tmp, Uπ', P[π])
# LinearAlgebra.mul!(tmp2, tmp, Uπ)
tmp2 = ' * Ps[π] *
if eltype(res) <: AbstractFloat
SymbolicWedderburn.zerotol!(tmp2, atol=1e-12)
end
tmp2 .*= SymbolicWedderburn.degree(ds)
@assert size(tmp2) == size(res)
for g in G
p = SymbolicWedderburn.induce(wedderburn.hom, g)
for c in axes(res, 2)
for r in axes(res, 1)
res[r, c] += tmp2[r^p, c^p]
end
end
end
end
res ./= Groups.order(Int, G)
return res
end
##
# Low-level solve
setwarmstart!(model::JuMP.Model, ::Nothing) = model
function setwarmstart!(model::JuMP.Model, warmstart)
constraint_map = Dict(
ct => JuMP.all_constraints(model, ct...) for
ct in JuMP.list_of_constraint_types(model)
)
JuMP.set_start_value.(JuMP.all_variables(model), warmstart.primal)
for (ct, idx) in pairs(constraint_map)
JuMP.set_start_value.(idx, warmstart.slack[ct])
JuMP.set_dual_start_value.(idx, warmstart.dual[ct])
end
return model
end
function getwarmstart(model::JuMP.Model)
constraint_map = Dict(
ct => JuMP.all_constraints(model, ct...) for
ct in JuMP.list_of_constraint_types(model)
)
primal = value.(JuMP.all_variables(model))
slack = Dict(k => value.(v) for (k, v) in constraint_map)
duals = Dict(k => JuMP.dual.(v) for (k, v) in constraint_map)
return (primal=primal, dual=duals, slack=slack)
end
function solve(m::JuMP.Model, optimizer, warmstart=nothing)
JuMP.set_optimizer(m, optimizer)
MOIU.attach_optimizer(m)
m = setwarmstart!(m, warmstart)
JuMP.optimize!(m)
Base.Libc.flush_cstdio()
status = JuMP.termination_status(m)
return status, getwarmstart(m)
end
function solve(solverlog::String, m::JuMP.Model, optimizer, warmstart=nothing)
isdir(dirname(solverlog)) || mkpath(dirname(solverlog))
Base.flush(Base.stdout)
Base.Libc.flush_cstdio()
status, warmstart = open(solverlog, "a+") do logfile
redirect_stdout(logfile) do
status, warmstart = solve(m, optimizer, warmstart)
status, warmstart
end
end
return status, warmstart
end

View File

@ -1,20 +1,3 @@
function check_positivity(elt, unit; upper_bound=Inf, halfradius=2, optimizer)
@time sos_problem =
PropertyT.sos_problem_primal(elt, unit, upper_bound=upper_bound)
status, _ = PropertyT.solve(sos_problem, optimizer)
P = JuMP.value.(sos_problem[:P])
Q = real.(sqrt(P))
certified, λ_cert = PropertyT.certify_solution(
elt,
unit,
JuMP.objective_value(sos_problem),
Q,
halfradius=halfradius,
)
return status, certified, λ_cert
end
@testset "1703.09680 Examples" begin
@testset "SL(2,Z)" begin
@ -79,15 +62,15 @@ end
@test λ > 1
m = PropertyT.sos_problem_dual(elt, unit)
PropertyT.solve(m, scs_optimizer(
eps=1e-10,
PropertyT.solve(m, cosmo_optimizer(
eps=1e-6,
max_iters=5_000,
accel=50,
alpha=1.9,
))
@test JuMP.termination_status(m) in (JuMP.ALMOST_OPTIMAL, JuMP.OPTIMAL)
@test JuMP.objective_value(m) 1.5 atol = 1e-3
@test JuMP.objective_value(m) 1.5 atol = 1e-2
end
@testset "SAut(F₂)" begin

View File

@ -1,44 +1,3 @@
function check_positivity(elt, unit, wd; upper_bound=Inf, halfradius=2, optimizer)
@assert aug(elt) == aug(unit) == 0
@time sos_problem, Ps =
PropertyT.sos_problem_primal(elt, unit, wd, upper_bound=upper_bound)
@time status, _ = PropertyT.solve(sos_problem, optimizer)
Q = let Ps = Ps
flPs = [real.(sqrt(JuMP.value.(P))) for P in Ps]
PropertyT.reconstruct(flPs, wd)
end
λ = JuMP.value(sos_problem[])
sos = let RG = parent(elt), Q = Q
z = zeros(eltype(Q), length(basis(RG)))
res = AlgebraElement(z, RG)
cnstrs = PropertyT.constraints(basis(RG), RG.mstructure, augmented=true)
PropertyT._cnstr_sos!(res, Q, cnstrs)
end
residual = elt - λ * unit - sos
λ_fl = PropertyT.sufficient_λ(residual, λ, halfradius=2)
λ_fl < 0 && return status, false, λ_fl
sos = let RG = parent(elt), Q = [PropertyT.IntervalArithmetic.@interval(q) for q in Q]
z = zeros(eltype(Q), length(basis(RG)))
res = AlgebraElement(z, RG)
cnstrs = PropertyT.constraints(basis(RG), RG.mstructure, augmented=true)
PropertyT._cnstr_sos!(res, Q, cnstrs)
end
λ_int = PropertyT.IntervalArithmetic.@interval(λ)
residual_int = elt - λ_int * unit - sos
λ_int = PropertyT.sufficient_λ(residual_int, λ_int, halfradius=2)
return status, λ_int > 0, PropertyT.IntervalArithmetic.inf(λ_int)
end
@testset "1712.07167 Examples" begin
@testset "SAut(F₃)" begin

View File

@ -1,59 +0,0 @@
@testset "Correctness of HPC SOS computation" begin
function prepare(G_name, λ, S_size)
pm = load("$G_name/delta.jld", "pm")
P = load("$G_name//solution.jld", "P")
@time Q = real(sqrt(P))
Δ_coeff = SparseVector(maximum(pm), collect(1:1+S_size), [S_size; ((-1.0) for i in 1:S_size)...])
Δ²_coeff = GroupRings.GRmul!(spzeros(length(Δ_coeff)), Δ_coeff, Δ_coeff, pm)
eoi = Δ²_coeff - λ*Δ_coeff
Q = PropertyT.augIdproj(Q)
return eoi, pm, Q
end
#########################################################
NAME = "SL(3,Z)"
eoi, pm, Q = prepare(NAME, 0.1, 3*2*2)
@time sos_sqr = PropertyT.compute_SOS_square(pm, Q)
@time sos_hpc = PropertyT.compute_SOS(pm, Q)
@test norm(sos_sqr - sos_hpc, 1) < 3e-12
@info "$NAME:\nDifference in l₁-norm between square and hpc sos decompositions:" norm(eoi-sos_sqr,1) norm(eoi-sos_hpc,1) norm(sos_sqr - sos_hpc, 1)
#########################################################
NAME = "SL(3,Z)_orbit"
eoi, pm, Q = prepare(NAME, 0.27, 3*2*2)
@time sos_sqr = PropertyT.compute_SOS_square(pm, Q)
@time sos_hpc = PropertyT.compute_SOS(pm, Q)
@test norm(sos_sqr - sos_hpc, 1) < 5e-12
@info "$NAME:\nDifference in l₁-norm between square and hpc sos decompositions:" norm(eoi-sos_sqr,1) norm(eoi-sos_hpc,1) norm(sos_sqr - sos_hpc, 1)
#########################################################
NAME = "SL(4,Z)_orbit"
eoi, pm, Q = prepare(NAME, 1.3, 4*3*2)
@time sos_sqr = PropertyT.compute_SOS_square(pm, Q)
@time sos_hpc = PropertyT.compute_SOS(pm, Q)
@test norm(sos_sqr - sos_hpc, 1) < 2e-10
@info "$NAME:\nDifference in l₁-norm between square and hpc sos decompositions:" norm(eoi-sos_sqr,1) norm(eoi-sos_hpc,1) norm(sos_sqr - sos_hpc, 1)
#########################################################
NAME = "SAut(F3)_orbit"
eoi, pm, Q = prepare(NAME, 0.15, 4*3*2*2)
@time sos_sqr = PropertyT.compute_SOS_square(pm, Q)
@time sos_hpc = PropertyT.compute_SOS(pm, Q)
@test norm(sos_sqr - sos_hpc, 1) < 6e-11
@info "$NAME:\nDifference in l₁-norm between square and hpc sos decompositions:" norm(eoi-sos_sqr,1) norm(eoi-sos_hpc,1) norm(sos_sqr - sos_hpc, 1)
end

41
test/check_positivity.jl Normal file
View File

@ -0,0 +1,41 @@
function check_positivity(elt, unit; upper_bound=Inf, halfradius=2, optimizer)
@time sos_problem =
PropertyT.sos_problem_primal(elt, unit, upper_bound=upper_bound)
status, _ = PropertyT.solve(sos_problem, optimizer)
P = JuMP.value.(sos_problem[:P])
Q = real.(sqrt(P))
certified, λ_cert = PropertyT.certify_solution(
elt,
unit,
JuMP.objective_value(sos_problem),
Q,
halfradius=halfradius,
)
return status, certified, λ_cert
end
function check_positivity(elt, unit, wd; upper_bound=Inf, halfradius=2, optimizer)
@assert aug(elt) == aug(unit) == 0
@time sos_problem, Ps =
PropertyT.sos_problem_primal(elt, unit, wd, upper_bound=upper_bound)
@time status, _ = PropertyT.solve(sos_problem, optimizer)
Q = let Ps = Ps
Qs = [real.(sqrt(JuMP.value.(P))) for P in Ps]
PropertyT.reconstruct(Qs, wd)
end
λ = JuMP.value(sos_problem[])
certified, λ_cert = PropertyT.certify_solution(
elt,
unit,
λ,
Q,
halfradius=halfradius
)
return status, certified, λ_cert
end

View File

@ -46,6 +46,28 @@
@testset "Symplectic group" begin
@testset "Sp2()" begin
genus = 2
halfradius = 1
SpN = MatrixGroups.SymplecticGroup{2genus}(Int8)
RSpN, S_sp, sizes_sp = PropertyT.group_algebra(SpN, halfradius=halfradius, twisted=true)
Δ, Δs = let RG = RSpN, S = S_sp, ψ = identity
Δ = RG(length(S)) - sum(RG(s) for s in S)
Δs = PropertyT.laplacians(
RG,
S,
x -> (gx = PropertyT.grading(ψ(x)); Set([gx, -gx])),
)
Δ, Δs
end
sq = sum(Δᵢ^2 for Δᵢ in values(Δs))
@test PropertyT.Adj(Δs, :C₂) + sq == Δ^2
end
genus = 3
halfradius = 1
@ -63,7 +85,7 @@
Δ, Δs
end
@testset "Adj correctness: genus=$genus" begin
@testset "Adj numerics for genus=$genus" begin
all_subtypes = (
:A₁, :C₁, Symbol("A₁×A₁"), Symbol("C₁×C₁"), Symbol("A₁×C₁"), :A₂, :C₂

80
test/quick_tests.jl Normal file
View File

@ -0,0 +1,80 @@
@testset "Quick tests" begin
@testset "SL(2,F₇)" begin
N = 2
p = 7
halfradius = 3
G = MatrixGroups.SpecialLinearGroup{N}(SymbolicWedderburn.Characters.FiniteFields.GF{p})
RG, S, sizes = PropertyT.group_algebra(G, halfradius=3, twisted=true)
Δ = let RG = RG, S = S
RG(length(S)) - sum(RG(s) for s in S)
end
elt = Δ^2
unit = Δ
ub = 0.58578# Inf# 1.5
@testset "standard formulation" begin
status, certified, λ_cert = check_positivity(
elt,
unit,
upper_bound=ub,
halfradius=2,
optimizer=cosmo_optimizer(
eps=1e-7,
max_iters=5_000,
accel=50,
alpha=1.95,
)
)
@test status == JuMP.OPTIMAL
@test certified
@test λ_cert > 5857 // 10000
m = PropertyT.sos_problem_dual(elt, unit)
PropertyT.solve(m, cosmo_optimizer(
eps=1e-7,
max_iters=10_000,
accel=50,
alpha=1.95,
))
@test JuMP.termination_status(m) in (JuMP.ALMOST_OPTIMAL, JuMP.OPTIMAL)
@test JuMP.objective_value(m) λ_cert atol = 1e-2
end
@testset "Wedderburn decomposition" begin
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
Σ = PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(G, Σ)
wd = WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[halfradius]]),
)
status, certified, λ_cert = check_positivity(
elt,
unit,
wd,
upper_bound=ub,
halfradius=2,
optimizer=cosmo_optimizer(
eps=1e-7,
max_iters=10_000,
accel=50,
alpha=1.9,
),
)
@test status == JuMP.OPTIMAL
@test certified
@test λ_cert > 5857 // 10000
end
end
end

View File

@ -1,8 +1,6 @@
using Test
using LinearAlgebra
using SparseArrays
BLAS.set_num_threads(1)
ENV["OMP_NUM_THREADS"] = 4
using Groups
using Groups.GroupsCore
@ -14,9 +12,11 @@ using SymbolicWedderburn.StarAlgebras
using SymbolicWedderburn.PermutationGroups
include("optimizers.jl")
include("check_positivity.jl")
include("quick_tests.jl")
@testset "PropertyT" begin
if haskey(ENV, "FULL_TEST") || haskey(ENV, "CI")
@testset "PropertyT" begin
include("constratint_matrices.jl")
include("actions.jl")
@ -25,4 +25,5 @@ include("optimizers.jl")
include("1812.03456.jl")
include("graded_adj.jl")
end
end