mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2025-01-13 06:47:32 +01:00
update/add scripts for SLNZ/SAutFn
This commit is contained in:
parent
f584df4c8d
commit
01ae87b4da
100
scripts/SAutFN_has_T.jl
Normal file
100
scripts/SAutFN_has_T.jl
Normal file
@ -0,0 +1,100 @@
|
||||
using LinearAlgebra
|
||||
BLAS.set_num_threads(4)
|
||||
ENV["OMP_NUM_THREADS"] = 4
|
||||
include(joinpath(@__DIR__, "../test/optimizers.jl"))
|
||||
using SCS_MKL_jll
|
||||
|
||||
using Groups
|
||||
import Groups.MatrixGroups
|
||||
|
||||
using PropertyT
|
||||
|
||||
import PropertyT.SW as SW
|
||||
using PropertyT.PG
|
||||
using PropertyT.SA
|
||||
include(joinpath(@__DIR__, "argparse.jl"))
|
||||
|
||||
const N = parsed_args["N"]
|
||||
const HALFRADIUS = parsed_args["halfradius"]
|
||||
const UPPER_BOUND = parsed_args["upper_bound"]
|
||||
|
||||
G = SpecialAutomorphismGroup(FreeGroup(N))
|
||||
@info "Running Δ² - λ·Δ sum of squares decomposition for " G
|
||||
|
||||
@info "computing group algebra structure"
|
||||
RG, S, sizes = @time PropertyT.group_algebra(G, halfradius = HALFRADIUS)
|
||||
|
||||
@info "computing WedderburnDecomposition"
|
||||
wd = let RG = RG, N = N
|
||||
G = StarAlgebras.object(RG)
|
||||
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
|
||||
Σ = Groups.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
|
||||
act = PropertyT.action_by_conjugation(G, Σ)
|
||||
|
||||
wdfl = @time SW.WedderburnDecomposition(
|
||||
Float64,
|
||||
Σ,
|
||||
act,
|
||||
basis(RG),
|
||||
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[HALFRADIUS]]),
|
||||
)
|
||||
end
|
||||
@info wd
|
||||
|
||||
Δ = RG(length(S)) - sum(RG(s) for s in S)
|
||||
elt = Δ^2;
|
||||
unit = Δ;
|
||||
warm = nothing
|
||||
|
||||
@info "defining optimization problem"
|
||||
@time model, varP = PropertyT.sos_problem_primal(
|
||||
elt,
|
||||
unit,
|
||||
wd;
|
||||
upper_bound = UPPER_BOUND,
|
||||
augmented = true,
|
||||
show_progress = true,
|
||||
)
|
||||
|
||||
let status = JuMP.OPTIMIZE_NOT_CALLED, warm = warm, eps = 1e-10
|
||||
certified, λ = false, 0.0
|
||||
while status ≠ JuMP.OPTIMAL
|
||||
@time status, warm = PropertyT.solve(
|
||||
model,
|
||||
scs_optimizer(;
|
||||
linear_solver = SCS.MKLDirectSolver,
|
||||
eps = eps,
|
||||
max_iters = N * 10_000,
|
||||
accel = 50,
|
||||
alpha = 1.95,
|
||||
),
|
||||
warm,
|
||||
)
|
||||
|
||||
@info "reconstructing the solution"
|
||||
Q = @time let wd = wd, Ps = [JuMP.value.(P) for P in varP], eps = 1e-10
|
||||
PropertyT.__droptol!.(Ps, 100eps)
|
||||
Qs = real.(sqrt.(Ps))
|
||||
PropertyT.__droptol!.(Qs, eps)
|
||||
|
||||
PropertyT.reconstruct(Qs, wd)
|
||||
end
|
||||
|
||||
@info "certifying the solution"
|
||||
certified, λ = PropertyT.certify_solution(
|
||||
elt,
|
||||
unit,
|
||||
JuMP.objective_value(model),
|
||||
Q;
|
||||
halfradius = HALFRADIUS,
|
||||
augmented = true,
|
||||
)
|
||||
end
|
||||
|
||||
if certified && λ > 0
|
||||
Κ(λ, S) = round(sqrt(2λ / length(S)), Base.RoundDown; digits = 5)
|
||||
@info "Certified result: $G has property (T):" N λ Κ(λ, S)
|
||||
else
|
||||
@info "Could NOT certify the result:" certified λ
|
||||
end
|
||||
end
|
@ -1,18 +1,17 @@
|
||||
using LinearAlgebra
|
||||
using MKL_jll
|
||||
BLAS.set_num_threads(4)
|
||||
|
||||
ENV["OMP_NUM_THREADS"] = 4
|
||||
include(joinpath(@__DIR__, "../test/optimizers.jl"))
|
||||
using SCS_MKL_jll
|
||||
|
||||
using Groups
|
||||
import Groups.MatrixGroups
|
||||
|
||||
include(joinpath(@__DIR__, "../test/optimizers.jl"))
|
||||
using PropertyT
|
||||
|
||||
using PropertyT.SymbolicWedderburn
|
||||
using PropertyT.PermutationGroups
|
||||
using PropertyT.StarAlgebras
|
||||
import PropertyT.SW as SW
|
||||
using PropertyT.PG
|
||||
using PropertyT.SA
|
||||
|
||||
include(joinpath(@__DIR__, "argparse.jl"))
|
||||
|
||||
@ -33,7 +32,7 @@ wd = let RG = RG, N = N
|
||||
Σ = Groups.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
|
||||
act = PropertyT.action_by_conjugation(G, Σ)
|
||||
|
||||
wdfl = @time SymbolicWedderburn.WedderburnDecomposition(
|
||||
wdfl = @time SW.WedderburnDecomposition(
|
||||
Float64,
|
||||
Σ,
|
||||
act,
|
||||
@ -61,9 +60,9 @@ begin
|
||||
model,
|
||||
scs_optimizer(;
|
||||
linear_solver = SCS.MKLDirectSolver,
|
||||
eps = 1e-10,
|
||||
max_iters = 20_000,
|
||||
accel = 50,
|
||||
eps = 1e-9,
|
||||
max_iters = 30_000,
|
||||
accel = -50,
|
||||
alpha = 1.95,
|
||||
),
|
||||
warm,
|
||||
|
96
scripts/SLn_Adj.jl
Normal file
96
scripts/SLn_Adj.jl
Normal file
@ -0,0 +1,96 @@
|
||||
using LinearAlgebra
|
||||
BLAS.set_num_threads(4)
|
||||
ENV["OMP_NUM_THREADS"] = 4
|
||||
include(joinpath(@__DIR__, "../test/optimizers.jl"))
|
||||
using SCS_MKL_jll
|
||||
|
||||
using Groups
|
||||
import Groups.MatrixGroups
|
||||
|
||||
using PropertyT
|
||||
|
||||
import PropertyT.SW as SW
|
||||
using PropertyT.PG
|
||||
using PropertyT.SA
|
||||
|
||||
include(joinpath(@__DIR__, "argparse.jl"))
|
||||
|
||||
const N = parsed_args["N"]
|
||||
const HALFRADIUS = parsed_args["halfradius"]
|
||||
const UPPER_BOUND = parsed_args["upper_bound"]
|
||||
|
||||
G = MatrixGroups.SpecialLinearGroup{N}(Int8)
|
||||
@info "Running Adj - λ·Δ sum of squares decomposition for " G
|
||||
|
||||
@info "computing group algebra structure"
|
||||
RG, S, sizes = @time PropertyT.group_algebra(G, halfradius = HALFRADIUS)
|
||||
|
||||
@info "computing WedderburnDecomposition"
|
||||
wd = let RG = RG, N = N
|
||||
G = StarAlgebras.object(RG)
|
||||
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
|
||||
Σ = Groups.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
|
||||
act = PropertyT.action_by_conjugation(G, Σ)
|
||||
|
||||
wdfl = @time SW.WedderburnDecomposition(
|
||||
Float64,
|
||||
Σ,
|
||||
act,
|
||||
basis(RG),
|
||||
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[HALFRADIUS]]),
|
||||
)
|
||||
end
|
||||
@info wd
|
||||
|
||||
Δ = RG(length(S)) - sum(RG(s) for s in S)
|
||||
Δs = let ψ = identity
|
||||
PropertyT.laplacians(RG, S, x -> (gx = PropertyT.grading(ψ(x)); Set([gx, -gx])))
|
||||
end
|
||||
elt = PropertyT.Adj(Δs, :A₂)
|
||||
unit = Δ
|
||||
warm = nothing
|
||||
|
||||
@info "defining optimization problem"
|
||||
@time model, varP = PropertyT.sos_problem_primal(
|
||||
elt,
|
||||
unit,
|
||||
wd;
|
||||
upper_bound = UPPER_BOUND,
|
||||
augmented = true,
|
||||
)
|
||||
|
||||
begin
|
||||
@time status, warm = PropertyT.solve(
|
||||
model,
|
||||
scs_optimizer(;
|
||||
eps = 1e-10,
|
||||
max_iters = 20_000,
|
||||
accel = 50,
|
||||
alpha = 1.95,
|
||||
),
|
||||
warm,
|
||||
)
|
||||
|
||||
@info "reconstructing the solution"
|
||||
Q = let wd = wd, Ps = [JuMP.value.(P) for P in varP]
|
||||
Qs = real.(sqrt.(Ps))
|
||||
PropertyT.reconstruct(Qs, wd)
|
||||
end
|
||||
|
||||
@info "certifying the solution"
|
||||
@time certified, λ = PropertyT.certify_solution(
|
||||
elt,
|
||||
unit,
|
||||
JuMP.objective_value(model),
|
||||
Q;
|
||||
halfradius = HALFRADIUS,
|
||||
augmented = true,
|
||||
)
|
||||
end
|
||||
|
||||
if certified && λ > 0
|
||||
Κ(λ, S) = round(sqrt(2λ / length(S)), Base.RoundDown; digits = 5)
|
||||
@info "Certified result: $G has property (T):" N λ Κ(λ, S)
|
||||
else
|
||||
@info "Could NOT certify the result:" certified λ
|
||||
end
|
Loading…
Reference in New Issue
Block a user