diff --git a/.JuliaFormatter.toml b/.JuliaFormatter.toml new file mode 100644 index 0000000..f196f10 --- /dev/null +++ b/.JuliaFormatter.toml @@ -0,0 +1,9 @@ +# Configuration file for JuliaFormatter.jl +# For more information, see: https://domluna.github.io/JuliaFormatter.jl/stable/config/ + +always_for_in = true +always_use_return = true +margin = 80 +remove_extra_newlines = true +separate_kwargs_with_semicolon = true +short_to_long_function_def = true diff --git a/Project.toml b/Project.toml index 8255f05..c13977e 100644 --- a/Project.toml +++ b/Project.toml @@ -6,6 +6,7 @@ version = "0.4.0" [deps] Groups = "5d8bd718-bd84-11e8-3b40-ad14f4a32557" IntervalArithmetic = "d1acc4aa-44c8-5952-acd4-ba5d80a2a253" +IntervalMatrices = "5c1f47dc-42dd-5697-8aaa-4d102d140ba9" JuMP = "4076af6c-e467-56ae-b986-b466b2749572" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" ProgressMeter = "92933f4c-e287-5a05-a399-4b506db050ca" @@ -17,11 +18,12 @@ SymbolicWedderburn = "858aa9a9-4c7c-4c62-b466-2421203962a2" COSMO = "0.8" Groups = "0.7" IntervalArithmetic = "0.20" +IntervalMatrices = "0.8" JuMP = "1.3" ProgressMeter = "1.7" -SCS = "1.1.0" +SCS = "1.1" StaticArrays = "1" -SymbolicWedderburn = "0.3.2" +SymbolicWedderburn = "0.3.4" julia = "1.6" [extras] diff --git a/scripts/G₂_Adj.jl b/scripts/G₂_Adj.jl new file mode 100644 index 0000000..8a499d0 --- /dev/null +++ b/scripts/G₂_Adj.jl @@ -0,0 +1,98 @@ +using LinearAlgebra +BLAS.set_num_threads(8) +using MKL_jll +ENV["OMP_NUM_THREADS"] = 4 + +using Groups +import Groups.MatrixGroups + +include(joinpath(@__DIR__, "../test/optimizers.jl")) +using PropertyT + +using PropertyT.SymbolicWedderburn +using PropertyT.PermutationGroups +using PropertyT.StarAlgebras + +include(joinpath(@__DIR__, "argparse.jl")) +include(joinpath(@__DIR__, "utils.jl")) + +# const N = parsed_args["N"] +const HALFRADIUS = parsed_args["halfradius"] +const UPPER_BOUND = parsed_args["upper_bound"] + +include(joinpath(@__DIR__, "./G₂_gens.jl")) + +G, roots, Weyl = G₂_roots_weyl() +@info "Running Adj² - λ·Δ sum of squares decomposition for G₂" + +@info "computing group algebra structure" +RG, S, sizes = @time PropertyT.group_algebra(G, halfradius = HALFRADIUS) + +@info "computing WedderburnDecomposition" +wd = let Σ = Weyl, RG = RG + act = PropertyT.AlphabetPermutation{eltype(Σ),Int64}( + Dict(g => PermutationGroups.perm(g) for g in Σ), + ) + + @time SymbolicWedderburn.WedderburnDecomposition( + Float64, + Σ, + act, + basis(RG), + StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[HALFRADIUS]]), + semisimple = false, + ) +end +@info wd + +function desubscriptify(symbol::Symbol) + digits = [ + Int(l) - 0x2080 for + l in reverse(string(symbol)) if 0 ≤ Int(l) - 0x2080 ≤ 9 + ] + res = 0 + for (i, d) in enumerate(digits) + res += 10^(i - 1) * d + end + return res +end + +function PropertyT.grading(g::MatrixGroups.MatrixElt, roots = roots) + id = desubscriptify(g.id) + return roots[id] +end + +Δ = RG(length(S)) - sum(RG(s) for s in S) +Δs = PropertyT.laplacians( + RG, + S, + x -> (gx = PropertyT.grading(x); Set([gx, -gx])), +) + +elt = PropertyT.Adj(Δs) +@assert elt == Δ^2 - PropertyT.Sq(Δs) +unit = Δ + +@time model, varP = PropertyT.sos_problem_primal( + elt, + unit, + wd; + upper_bound = UPPER_BOUND, + augmented = true, + show_progress = true, +) + +solve_in_loop( + model, + wd, + varP; + logdir = "./log/G2/r=$HALFRADIUS/Adj-$(UPPER_BOUND)Δ", + optimizer = scs_optimizer(; + linear_solver = SCS.MKLDirectSolver, + eps = 1e-9, + max_iters = 100_000, + accel = 50, + alpha = 1.95, + ), + data = (elt = elt, unit = unit, halfradius = HALFRADIUS), +) diff --git a/scripts/G₂_gens.jl b/scripts/G₂_gens.jl new file mode 100644 index 0000000..48677d5 --- /dev/null +++ b/scripts/G₂_gens.jl @@ -0,0 +1,308 @@ +#= GAP code to generate matrices +alg := SimpleLieAlgebra("G", 2, Rationals); +root_sys := RootSystem(alg); +pos_gens := PositiveRootVectors(root_sys); +pos_rts := PositiveRoots(root_sys); + +neg_gens := NegativeRootVectors(root_sys); +neg_rts := NegativeRoots(root_sys); + +alg_gens := ShallowCopy(pos_gens);; +Append(alg_gens, neg_gens); +grading := ShallowCopy(pos_rts); +Append(grading, neg_rts); + +mats := List(alg_gens, x->AdjointMatrix(Basis(alg), x)); + +W := WeylGroup(root_sys); +PW := Action(W, grading, OnRight); +=# + +using LinearAlgebra + +function matrix_exp(M::AbstractMatrix{<:Integer}) + res = zeros(Rational{eltype(M)}, size(M)) + res += I + k = 0 + expM = one(M) + while !iszero(expM) + k += 1 + expM *= M + @. res += 1 // factorial(k) * expM + if k == 20 + @warn "matrix exponential did not converge" norm(expM - exp(M)) + break + end + end + @debug "matrix_exp converged after $k iterations" + return res +end + +const gap_adj_mats = [ + [ + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 1], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + ], + [ + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -2], + [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], + ], + [ + [0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1], + [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0], + ], + [ + [0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0], + [3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0], + ], + [ + [0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 1], + [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], + ], + [ + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0], + ], + [ + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -1], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + ], + [ + [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 2], + [0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + ], + [ + [0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1], + [0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0], + [0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + ], + [ + [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0], + [0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + ], + [ + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -1], + [0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0], + ], + [ + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], + [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0], + ], +] + +function G₂_matrices_roots() + adj_mats = map(gap_adj_mats) do m + return hcat(m...) + end + adj_mats = filter!(!isdiag, adj_mats) # remove the ones from center + + gens_mats = [convert(Matrix{Int}, matrix_exp(m')) for m in adj_mats] + + #= + The roots from + + G₂roots_gap = [ + [2, -1], # α = e₁ - e₂ + [-3, 2], # A = -α + β = -e₁ + 2e₂ - e₃ + [-1, 1], # β = e₂ - e₃ + [1, 0], # α + β = e₁ - e₃ + [3, -1], # B = 2α + β = 2e₁ - e₂ - e₃ + [0, 1], # A + B = α + 2β = e₁ + e₂ - 2e₃ + [-2, 1], # -α + [3, -2], # -A + [1, -1], # -β + [-1, 0], # -α - β + [-3, 1], # -B + [0, -1], # -A - B + ] + + G₂roots_gap are the ones from cartan matrix. To obtain the standard + (hexagonal) picture map them by `T` defined as follows: + ```julia + cartan = hcat(G₂roots_gap[1:2]...) + rot(α) = [cos(α) -sin(α); sin(α) cos(α)] + + c₁ = [√2, 0] + c₂ = rot(5π / 6) * [√2, 0] * √3 # (= 1/2[√6, 1]) + + T = hcat(c₁, c₂) * inv(cartan) + ``` + By plotting one against the others (or by blind calculation) one can see + the following assignment. Here `⟨α, β⟩_ℤ = A₂` and `⟨A, B⟩_ℤ ≅ √3/√2 A₂`. + =# + e₁ = PropertyT.Roots.𝕖(3, 1) + e₂ = PropertyT.Roots.𝕖(3, 2) + e₃ = PropertyT.Roots.𝕖(3, 3) + + α = e₁ - e₂ + β = e₂ - e₃ + A = -α + β + B = α + (α + β) + + roots = [α, A, β, α + β, B, A + B, -α, -A, -β, -α - β, -B, -A - B] + + return gens_mats, roots +end + +function G₂_roots_weyl() + (mats, roots) = G₂_matrices_roots() + d = size(first(mats), 1) + G₂ = Groups.MatrixGroup{d}(mats) + + m = Groups.gens(G₂) + + σ = let w = m[1] * inv(m[7]) * m[1], m = union(m, inv.(m)) + PermutationGroups.Perm([findfirst(==(inv(w) * x * w), m) for x in m]) + end + + τ = let w = m[2] * inv(m[8]) * m[2], m = union(m, inv.(m)) + PermutationGroups.Perm([findfirst(==(inv(w) * x * w), m) for x in m]) + end + + W = PermGroup(σ, τ) + + return G₂, roots, W +end diff --git a/scripts/G₂_has_T.jl b/scripts/G₂_has_T.jl new file mode 100644 index 0000000..cde9048 --- /dev/null +++ b/scripts/G₂_has_T.jl @@ -0,0 +1,98 @@ +using LinearAlgebra +BLAS.set_num_threads(8) + +ENV["OMP_NUM_THREADS"] = 4 + +using Groups +import Groups.MatrixGroups + +include(joinpath(@__DIR__, "../test/optimizers.jl")) +using PropertyT + +using PropertyT.SymbolicWedderburn +using PropertyT.PermutationGroups +using PropertyT.StarAlgebras + +include(joinpath(@__DIR__, "argparse.jl")) +include(joinpath(@__DIR__, "utils.jl")) + +# const N = parsed_args["N"] +const HALFRADIUS = parsed_args["halfradius"] +const UPPER_BOUND = parsed_args["upper_bound"] + +include(joinpath(@__DIR__, "./G₂_gens.jl")) + +G, roots, Weyl = G₂_roots_weyl() +@info "Running Δ² - λ·Δ sum of squares decomposition for G₂" + +@info "computing group algebra structure" +RG, S, sizes = @time PropertyT.group_algebra(G, halfradius = HALFRADIUS) + +@info "computing WedderburnDecomposition" +wd = let Σ = Weyl, RG = RG + act = PropertyT.AlphabetPermutation{eltype(Σ),Int64}( + Dict(g => PermutationGroups.perm(g) for g in Σ), + ) + + @time SymbolicWedderburn.WedderburnDecomposition( + Float64, + Σ, + act, + basis(RG), + StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[HALFRADIUS]]), + semisimple = false, + ) +end +@info wd + +Δ = RG(length(S)) - sum(RG(s) for s in S) +elt = Δ^2 +unit = Δ + +@time model, varP = PropertyT.sos_problem_primal( + elt, + unit, + wd; + upper_bound = UPPER_BOUND, + augmented = true, + show_progress = false, +) +warm = nothing +status = JuMP.OPTIMIZE_NOT_CALLED +certified, λ = false, nothing + +while status ≠ JuMP.OPTIMAL + @time status, warm = PropertyT.solve( + model, + scs_optimizer(; + eps = 1e-10, + max_iters = 20_000, + accel = 50, + alpha = 1.95, + ), + warm, + ) + + @info "reconstructing the solution" + Q = @time let wd = wd, Ps = [JuMP.value.(P) for P in varP] + Qs = real.(sqrt.(Ps)) + PropertyT.reconstruct(Qs, wd) + end + + @info "certifying the solution" + @time certified, λ = PropertyT.certify_solution( + elt, + unit, + JuMP.objective_value(model), + Q; + halfradius = HALFRADIUS, + augmented = true, + ) +end + +if certified && λ > 0 + Κ(λ, S) = round(sqrt(2λ / length(S)), Base.RoundDown; digits = 5) + @info "Certified result: G₂ has property (T):" N λ Κ(λ, S) +else + @info "Could NOT certify the result:" certified λ +end diff --git a/scripts/SpN_Adj.jl b/scripts/SpN_Adj.jl index c5922de..35b9a6b 100644 --- a/scripts/SpN_Adj.jl +++ b/scripts/SpN_Adj.jl @@ -24,8 +24,7 @@ const GENUS = 2N G = MatrixGroups.SymplecticGroup{GENUS}(Int8) -RG, S, sizes = - @time PropertyT.group_algebra(G, halfradius=HALFRADIUS, twisted=true) +RG, S, sizes = @time PropertyT.group_algebra(G, halfradius = HALFRADIUS) wd = let RG = RG, N = N G = StarAlgebras.object(RG) @@ -42,6 +41,8 @@ wd = let RG = RG, N = N basis(RG), StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[HALFRADIUS]]), ) + @info wdfl + wdfl end Δ = RG(length(S)) - sum(RG(s) for s in S) @@ -58,23 +59,22 @@ unit = Δ @time model, varP = PropertyT.sos_problem_primal( elt, unit, - wd, - upper_bound=UPPER_BOUND, - augmented=true, - show_progress=true + wd; + upper_bound = UPPER_BOUND, + augmented = true, + show_progress = true, ) solve_in_loop( model, wd, - varP, - logdir="./log/Sp($N,Z)/r=$HALFRADIUS/Adj_C₂-InfΔ", - optimizer=cosmo_optimizer( - eps=1e-10, - max_iters=20_000, - accel=50, - alpha=1.95, + varP; + logdir = "./log/Sp($N,Z)/r=$HALFRADIUS/Adj_C₂-$(UPPER_BOUND)Δ", + optimizer = cosmo_optimizer(; + eps = 1e-10, + max_iters = 20_000, + accel = 50, + alpha = 1.95, ), - data=(elt=elt, unit=unit, halfradius=HALFRADIUS) + data = (elt = elt, unit = unit, halfradius = HALFRADIUS), ) - diff --git a/scripts/utils.jl b/scripts/utils.jl index df891b3..4c4b394 100644 --- a/scripts/utils.jl +++ b/scripts/utils.jl @@ -11,12 +11,19 @@ function get_solution(model) return solution end -function get_solution(model, wd, varP; logdir) +function get_solution(model, wd, varP, eps = 1e-10) λ = JuMP.value(model[:λ]) - Qs = [real.(sqrt(JuMP.value.(P))) for P in varP] - Q = PropertyT.reconstruct(Qs, wd) + @info "reconstructing the solution" + Q = @time let wd = wd, Ps = [JuMP.value.(P) for P in varP], eps = eps + PropertyT.__droptol!.(Ps, 100eps) + Qs = real.(sqrt.(Ps)) + PropertyT.__droptol!.(Qs, eps) + PropertyT.reconstruct(Qs, wd) + end + solution = Dict(:λ => λ, :Q => Q) + return solution end @@ -42,22 +49,23 @@ function solve_in_loop(model::JuMP.Model, args...; logdir, optimizer, data) # logstream = current_logger().logger.stream # v = @ccall setvbuf(logstream.handle::Ptr{Cvoid}, C_NULL::Ptr{Cvoid}, 1::Cint, 0::Cint)::Cint # @warn v - status, warm = @time PropertyT.solve(log_file, model, optimizer, warm) - - solution = get_solution(model, args...; logdir=logdir) - solution[:warm] = warm + status, warm = + @time PropertyT.solve(log_file, model, optimizer, warm) + solution = get_solution(model, args...) serialize(joinpath(logdir, "solution_$date.sjl"), solution) serialize(joinpath(logdir, "solution.sjl"), solution) - flag, λ_cert = open(log_file, append=true) do io + solution[:warm] = warm + + flag, λ_cert = open(log_file; append = true) do io with_logger(SimpleLogger(io)) do - PropertyT.certify_solution( + return PropertyT.certify_solution( data.elt, data.unit, solution[:λ], - solution[:Q], - halfradius=data.halfradius, + solution[:Q]; + halfradius = data.halfradius, ) end end @@ -66,19 +74,20 @@ function solve_in_loop(model::JuMP.Model, args...; logdir, optimizer, data) end if flag == true && certified_λ ≥ 0 - @info "Certification done with λ = $certified_λ" + @info "Certification done with λ = $certified_λ" certified_λ status return certified_λ else - rel_change = abs(certified_λ - old_lambda) / (abs(certified_λ) + abs(old_lambda)) - @info "Certification failed with λ = $λ" certified_λ rel_change + rel_change = + abs(certified_λ - old_lambda) / + (abs(certified_λ) + abs(old_lambda)) + @info "Certification failed with λ = $λ" certified_λ rel_change status + if rel_change < 1e-9 + @info "No progress detected, breaking" certified_λ rel_change status + break + end end old_lambda = certified_λ - - if rel_change < 1e-9 - @info "No progress detected, breaking" - break - end end return status == JuMP.OPTIMAL ? old_lambda : NaN diff --git a/src/PropertyT.jl b/src/PropertyT.jl index 6b97d5d..60b0aef 100644 --- a/src/PropertyT.jl +++ b/src/PropertyT.jl @@ -3,7 +3,6 @@ module PropertyT using LinearAlgebra using SparseArrays -using IntervalArithmetic using JuMP using Groups @@ -26,17 +25,17 @@ include("gradings.jl") include("actions/actions.jl") -function group_algebra(G::Groups.Group, S=gens(G); halfradius::Integer, twisted::Bool) +function group_algebra(G::Groups.Group, S = gens(G); halfradius::Integer) S = union!(S, inv.(S)) @info "generating wl-metric ball of radius $(2halfradius)" - @time E, sizes = Groups.wlmetric_ball(S, radius=2halfradius) + @time E, sizes = Groups.wlmetric_ball(S; radius = 2halfradius) @info "sizes = $(sizes)" @info "computing the *-algebra structure for G" - @time RG = StarAlgebras.StarAlgebra{twisted}( + @time RG = StarAlgebras.StarAlgebra( G, StarAlgebras.Basis{UInt32}(E), - (sizes[halfradius], sizes[halfradius]), - precompute=false, + (sizes[halfradius], sizes[halfradius]); + precompute = false, ) return RG, S, sizes end diff --git a/src/actions/actions.jl b/src/actions/actions.jl index 9cc6872..8205e8b 100644 --- a/src/actions/actions.jl +++ b/src/actions/actions.jl @@ -1,5 +1,4 @@ import SymbolicWedderburn.action -StarAlgebras.star(g::Groups.GroupElement) = inv(g) include("alphabet_permutation.jl") @@ -10,7 +9,7 @@ include("autfn_conjugation.jl") function SymbolicWedderburn.action( act::SymbolicWedderburn.ByPermutations, g::Groups.GroupElement, - α::StarAlgebras.AlgebraElement + α::StarAlgebras.AlgebraElement, ) res = StarAlgebras.zero!(similar(α)) B = basis(parent(α)) diff --git a/src/certify.jl b/src/certify.jl index cdebcc9..b93c843 100644 --- a/src/certify.jl +++ b/src/certify.jl @@ -1,3 +1,6 @@ +import IntervalArithmetic +import IntervalMatrices + function augment_columns!(Q::AbstractMatrix) for c in eachcol(Q) c .-= sum(c) ./ length(c) @@ -8,26 +11,25 @@ end function __sos_via_sqr!( res::StarAlgebras.AlgebraElement, P::AbstractMatrix; - augmented::Bool + augmented::Bool, + id = (b = basis(parent(res)); b[one(first(b))]), ) - StarAlgebras.zero!(res) A = parent(res) - b = basis(A) - @assert size(A.mstructure) == size(P) - e = b[one(b[1])] + mstr = A.mstructure + @assert size(mstr) == size(P) - for i in axes(A.mstructure, 1) - x = StarAlgebras._istwisted(A.mstructure) ? StarAlgebras.star(b[i]) : b[i] - for j in axes(A.mstructure, 2) + StarAlgebras.zero!(res) + for j in axes(mstr, 2) + for i in axes(mstr, 1) p = P[i, j] - xy = b[A.mstructure[i, j]] - # either result += P[x,y]*(x*y) - res[xy] += p + x_star_y = mstr[-i, j] + res[x_star_y] += p + # either result += P[x,y]*(x'*y) if augmented - # or result += P[x,y]*(1-x)*(1-y) == P[x,y]*(2-x-y+xy) - y = b[j] - res[e] += p - res[x] -= p + # or result += P[x,y]*(1-x)'*(1-y) == P[x,y]*(1-x'-y+x'y) + res[id] += p + x_star, y = mstr[-i, id], j + res[x_star] -= p res[y] -= p end end @@ -36,7 +38,11 @@ function __sos_via_sqr!( return res end -function __sos_via_cnstr!(res::StarAlgebras.AlgebraElement, Q²::AbstractMatrix, cnstrs) +function __sos_via_cnstr!( + res::StarAlgebras.AlgebraElement, + Q²::AbstractMatrix, + cnstrs, +) StarAlgebras.zero!(res) for (g, A_g) in cnstrs res[g] = dot(A_g, Q²) @@ -44,10 +50,14 @@ function __sos_via_cnstr!(res::StarAlgebras.AlgebraElement, Q²::AbstractMatrix, return res end -function compute_sos(A::StarAlgebras.StarAlgebra, Q::AbstractMatrix; augmented::Bool) +function compute_sos( + A::StarAlgebras.StarAlgebra, + Q::AbstractMatrix; + augmented::Bool, +) Q² = Q' * Q res = StarAlgebras.AlgebraElement(zeros(eltype(Q²), length(basis(A))), A) - res = __sos_via_sqr!(res, Q², augmented=augmented) + res = __sos_via_sqr!(res, Q²; augmented = augmented) return res end @@ -56,7 +66,7 @@ function sufficient_λ(residual::StarAlgebras.AlgebraElement, λ; halfradius) suff_λ = λ - 2.0^(2ceil(log2(halfradius))) * L1_norm eq_sign = let T = eltype(residual) - if T <: Interval + if T <: IntervalArithmetic.Interval "∈" elseif T <: Union{Rational,Integer} "=" @@ -81,13 +91,12 @@ function sufficient_λ( order_unit::StarAlgebras.AlgebraElement, λ, sos::StarAlgebras.AlgebraElement; - halfradius + halfradius, ) - @assert parent(elt) === parent(order_unit) == parent(sos) residual = (elt - λ * order_unit) - sos - return sufficient_λ(residual, λ; halfradius=halfradius) + return sufficient_λ(residual, λ; halfradius = halfradius) end function certify_solution( @@ -96,24 +105,27 @@ function certify_solution( λ, Q::AbstractMatrix{<:AbstractFloat}; halfradius, - augmented=iszero(StarAlgebras.aug(elt)) && iszero(StarAlgebras.aug(orderunit)) + augmented = iszero(StarAlgebras.aug(elt)) && + iszero(StarAlgebras.aug(orderunit)), ) - - should_we_augment = !augmented && StarAlgebras.aug(elt) == StarAlgebras.aug(orderunit) == 0 + should_we_augment = + !augmented && StarAlgebras.aug(elt) == StarAlgebras.aug(orderunit) == 0 Q = should_we_augment ? augment_columns!(Q) : Q - @time sos = compute_sos(parent(elt), Q, augmented=augmented) + @time sos = compute_sos(parent(elt), Q; augmented = augmented) @info "Checking in $(eltype(sos)) arithmetic with" λ - λ_flpoint = sufficient_λ(elt, orderunit, λ, sos, halfradius=halfradius) + λ_flpoint = sufficient_λ(elt, orderunit, λ, sos; halfradius = halfradius) if λ_flpoint ≤ 0 return false, λ_flpoint end - λ_int = @interval(λ) - Q_int = [@interval(q) for q in Q] + λ_int = IntervalArithmetic.@interval(λ) + Q_int = IntervalMatrices.IntervalMatrix([ + IntervalArithmetic.@interval(q) for q in Q + ]) check, sos_int = @time if should_we_augment @info("Projecting columns of Q to the augmentation ideal...") @@ -123,16 +135,16 @@ function certify_solution( check_augmented || @error( "Augmentation failed! The following numbers are not certified!" ) - sos_int = compute_sos(parent(elt), Q_int; augmented=augmented) + sos_int = compute_sos(parent(elt), Q_int; augmented = augmented) check_augmented, sos_int else - true, compute_sos(parent(elt), Q_int, augmented=augmented) + true, compute_sos(parent(elt), Q_int; augmented = augmented) end @info "Checking in $(eltype(sos_int)) arithmetic with" λ_int λ_certified = - sufficient_λ(elt, orderunit, λ_int, sos_int, halfradius=halfradius) + sufficient_λ(elt, orderunit, λ_int, sos_int; halfradius = halfradius) - return check && inf(λ_certified) > 0.0, inf(λ_certified) + return check && IntervalArithmetic.inf(λ_certified) > 0.0, λ_certified end diff --git a/src/constraint_matrix.jl b/src/constraint_matrix.jl index 8fbd36a..997a037 100644 --- a/src/constraint_matrix.jl +++ b/src/constraint_matrix.jl @@ -28,7 +28,12 @@ struct ConstraintMatrix{T,I} <: AbstractMatrix{T} size::Tuple{Int,Int} val::T - function ConstraintMatrix{T}(nzeros::AbstractArray{<:Integer}, n, m, val) where {T} + function ConstraintMatrix{T}( + nzeros::AbstractArray{<:Integer}, + n, + m, + val, + ) where {T} @assert n ≥ 1 @assert m ≥ 1 @@ -45,15 +50,26 @@ struct ConstraintMatrix{T,I} <: AbstractMatrix{T} end end -ConstraintMatrix(nzeros::AbstractArray{<:Integer}, n, m, val::T) where {T} = - ConstraintMatrix{T}(nzeros, n, m, val) +function ConstraintMatrix( + nzeros::AbstractArray{<:Integer}, + n, + m, + val::T, +) where {T} + return ConstraintMatrix{T}(nzeros, n, m, val) +end Base.size(cm::ConstraintMatrix) = cm.size -__get_positive(cm::ConstraintMatrix, idx::Integer) = - convert(eltype(cm), cm.val * length(searchsorted(cm.pos, idx))) -__get_negative(cm::ConstraintMatrix, idx::Integer) = - convert(eltype(cm), cm.val * length(searchsorted(cm.neg, idx))) +function __get_positive(cm::ConstraintMatrix, idx::Integer) + return convert(eltype(cm), cm.val * length(searchsorted(cm.pos, idx))) +end +function __get_negative(cm::ConstraintMatrix, idx::Integer) + return convert( + eltype(cm), + cm.val * length(searchsorted(cm.neg, idx; rev = true)), + ) +end Base.@propagate_inbounds function Base.getindex( cm::ConstraintMatrix, @@ -67,26 +83,29 @@ Base.@propagate_inbounds function Base.getindex( return pos - neg end -struct NZPairsIter{T} - m::ConstraintMatrix{T} +struct NZPairsIter{T,I} + m::ConstraintMatrix{T,I} end Base.eltype(::Type{NZPairsIter{T}}) where {T} = Pair{Int,T} Base.IteratorSize(::Type{<:NZPairsIter}) = Base.SizeUnknown() # TODO: iterate over (idx=>val) pairs combining vals -function Base.iterate(itr::NZPairsIter, state::Tuple{Int,Int}=(1, 1)) +function Base.iterate( + itr::NZPairsIter, + state::Tuple{Int,Nothing} = (1, nothing), +) k = iterate(itr.m.pos, state[1]) - isnothing(k) && return iterate(itr, state[2]) + isnothing(k) && return iterate(itr, (nothing, 1)) idx, st = k - return idx => itr.m.val, (st, 1) + return idx => itr.m.val, (st, nothing) end -function Base.iterate(itr::NZPairsIter, state::Int) - k = iterate(itr.m.neg, state[1]) +function Base.iterate(itr::NZPairsIter, state::Tuple{Nothing,Int}) + k = iterate(itr.m.neg, state[2]) isnothing(k) && return nothing idx, st = k - return idx => -itr.m.val, st + return idx => -itr.m.val, (nothing, st) end """ @@ -127,3 +146,50 @@ function LinearAlgebra.dot(cm::ConstraintMatrix, m::AbstractMatrix{T}) where {T} neg = isempty(cm.neg) ? zero(first(m)) : sum(@view m[cm.neg]) return convert(eltype(cm), cm.val) * (pos - neg) end + +function constraints(A::StarAlgebras.StarAlgebra; augmented::Bool) + return constraints(basis(A), A.mstructure; augmented = augmented) +end + +function constraints( + basis::StarAlgebras.AbstractBasis, + mstr::StarAlgebras.MultiplicativeStructure; + augmented = false, +) + cnstrs = _constraints( + mstr; + augmented = augmented, + num_constraints = length(basis), + id = basis[one(first(basis))], + ) + + return Dict( + basis[i] => ConstraintMatrix(c, size(mstr)..., 1) for + (i, c) in pairs(cnstrs) + ) +end + +function _constraints( + mstr::StarAlgebras.MultiplicativeStructure; + augmented::Bool = false, + num_constraints = maximum(mstr), + id, +) + cnstrs = [signed(eltype(mstr))[] for _ in 1:num_constraints] + LI = LinearIndices(size(mstr)) + + for ci in CartesianIndices(size(mstr)) + k = LI[ci] + i, j = Tuple(ci) + a_star_b = mstr[-i, j] + push!(cnstrs[a_star_b], k) + if augmented + # (1-a)'(1-b) = 1 - a' - b + a'b + push!(cnstrs[id], k) + a_star, b = mstr[-i, id], j + push!(cnstrs[a_star], -k) + push!(cnstrs[b], -k) + end + end + return cnstrs +end diff --git a/src/gradings.jl b/src/gradings.jl index 8f34efa..b51de1a 100644 --- a/src/gradings.jl +++ b/src/gradings.jl @@ -1,7 +1,8 @@ ## something about roots -Roots.Root(e::MatrixGroups.ElementaryMatrix{N}) where {N} = - Roots.𝕖(N, e.i) - Roots.𝕖(N, e.j) +function Roots.Root(e::MatrixGroups.ElementaryMatrix{N}) where {N} + return Roots.𝕖(N, e.i) - Roots.𝕖(N, e.j) +end function Roots.Root(s::MatrixGroups.ElementarySymplectic{N}) where {N} if s.symbol === :A @@ -51,20 +52,28 @@ function Adj(rootsystem::AbstractDict, subtype::Symbol) +, ( Δα * Δβ for (α, Δα) in rootsystem for (β, Δβ) in rootsystem if - Roots.classify_sub_root_system( - roots, - first(α), - first(β), - ) == subtype - ), - init=zero(first(values(rootsystem))), + Roots.classify_sub_root_system(roots, first(α), first(β)) == subtype + ); + init = zero(first(values(rootsystem))), + ) +end + +Adj(rootsystem::AbstractDict) = sum(values(rootsystem))^2 - Sq(rootsystem) + +function Sq(rootsystem::AbstractDict) + return reduce( + +, + Δα^2 for (_, Δα) in rootsystem; + init = zero(first(values(rootsystem))), ) end function level(rootsystem, level::Integer) 1 ≤ level ≤ 4 || throw("level is implemented only for i ∈{1,2,3,4}") level == 1 && return Adj(rootsystem, :C₁) # always positive - level == 2 && return Adj(rootsystem, :A₁) + Adj(rootsystem, Symbol("C₁×C₁")) + Adj(rootsystem, :C₂) # C₂ is not positive + level == 2 && return Adj(rootsystem, :A₁) + + Adj(rootsystem, Symbol("C₁×C₁")) + + Adj(rootsystem, :C₂) # C₂ is not positive level == 3 && return Adj(rootsystem, :A₂) + Adj(rootsystem, Symbol("A₁×C₁")) level == 4 && return Adj(rootsystem, Symbol("A₁×A₁")) # positive end diff --git a/src/reconstruct.jl b/src/reconstruct.jl index 75451ee..ce55619 100644 --- a/src/reconstruct.jl +++ b/src/reconstruct.jl @@ -7,33 +7,28 @@ end function reconstruct( Ms::AbstractVector{<:AbstractMatrix}, - wbdec::WedderburnDecomposition; - atol=eps(real(eltype(wbdec))) * 10__outer_dim(wbdec) + wbdec::WedderburnDecomposition, ) n = __outer_dim(wbdec) res = sum(zip(Ms, SymbolicWedderburn.direct_summands(wbdec))) do (M, ds) res = similar(M, n, n) - reconstruct!(res, M, ds, __group_of(wbdec), wbdec.hom, atol=atol) + res = _reconstruct!(res, M, ds) + return res end + res = average!(zero(res), res, __group_of(wbdec), wbdec.hom) return res end -function reconstruct!( +function _reconstruct!( res::AbstractMatrix, M::AbstractMatrix, ds::SymbolicWedderburn.DirectSummand, - G, - hom; - atol=eps(real(eltype(ds))) * 10max(size(res)...) ) res .= zero(eltype(res)) - U = SymbolicWedderburn.image_basis(ds) - d = SymbolicWedderburn.degree(ds) - tmp = (U' * M * U) .* d - - res = average!(res, tmp, G, hom) - if eltype(res) <: AbstractFloat - __droptol!(res, atol) # TODO: is this really necessary?! + if !iszero(M) + U = SymbolicWedderburn.image_basis(ds) + d = SymbolicWedderburn.degree(ds) + res = (U' * M * U) .* d end return res end @@ -52,18 +47,22 @@ function average!( res::AbstractMatrix, M::AbstractMatrix, G::Groups.Group, - hom::SymbolicWedderburn.InducedActionHomomorphism{<:SymbolicWedderburn.ByPermutations} + hom::SymbolicWedderburn.InducedActionHomomorphism{ + <:SymbolicWedderburn.ByPermutations, + }, ) + res .= zero(eltype(res)) @assert size(M) == size(res) + o = Groups.order(Int, G) for g in G - gext = SymbolicWedderburn.induce(hom, g) + p = SymbolicWedderburn.induce(hom, g) Threads.@threads for c in axes(res, 2) for r in axes(res, 1) - res[r, c] += M[r^gext, c^gext] + if !iszero(M[r, c]) + res[r^p, c^p] += M[r, c] / o + end end end end - o = Groups.order(Int, G) - res ./= o return res end diff --git a/src/roots.jl b/src/roots.jl index 3c5d6f3..92a915c 100644 --- a/src/roots.jl +++ b/src/roots.jl @@ -5,111 +5,104 @@ using LinearAlgebra export Root, isproportional, isorthogonal, ~, ⟂ -abstract type AbstractRoot{N,T} end +abstract type AbstractRoot{N,T} end # <: AbstractVector{T} ? -struct Root{N,T} <: AbstractRoot{N,T} - coord::SVector{N,T} -end - -Root(a) = Root(SVector(a...)) - -function Base.:(==)(r::Root{N}, s::Root{M}) where {M,N} - M == N || return false - r.coord == s.coord || return false - return true -end - -Base.hash(r::Root, h::UInt) = hash(r.coord, hash(Root, h)) - -Base.:+(r::Root{N,T}, s::Root{N,T}) where {N,T} = Root{N,T}(r.coord + s.coord) -Base.:-(r::Root{N,T}, s::Root{N,T}) where {N,T} = Root{N,T}(r.coord - s.coord) -Base.:-(r::Root{N}) where {N} = Root(-r.coord) - -Base.:*(a::Number, r::Root) = Root(a * r.coord) -Base.:*(r::Root, a::Number) = a * r - -Base.length(r::AbstractRoot) = norm(r, 2) - -LinearAlgebra.norm(r::Root, p::Real=2) = norm(r.coord, p) -LinearAlgebra.dot(r::Root, s::Root) = dot(r.coord, s.coord) +ℓ₂length(r::AbstractRoot) = norm(r, 2) +ambient_dim(r::AbstractRoot) = length(r) +Base.:*(r::AbstractRoot, a::Number) = a * r cos_angle(a, b) = dot(a, b) / (norm(a) * norm(b)) -function isproportional(α::AbstractRoot{N}, β::AbstractRoot{M}) where {N,M} - N == M || return false +function isproportional(α::AbstractRoot, β::AbstractRoot) + ambient_dim(α) == ambient_dim(β) || return false val = abs(cos_angle(α, β)) - return isapprox(val, one(val), atol=eps(one(val))) + return isapprox(val, one(val); atol = eps(one(val))) end -function isorthogonal(α::AbstractRoot{N}, β::AbstractRoot{M}) where {N,M} - N == M || return false +function isorthogonal(α::AbstractRoot, β::AbstractRoot) + ambient_dim(α) == ambient_dim(β) || return false val = cos_angle(α, β) - return isapprox(val, zero(val), atol=eps(one(val))) + return isapprox(val, zero(val); atol = eps(one(val))) end -function _positive_direction(α::Root{N}) where {N} - v = α.coord + 1 / (N * 100) * rand(N) - return Root{N,Float64}(v / norm(v, 2)) -end - -function positive(roots::AbstractVector{<:Root{N}}) where {N} - # return those roots for which dot(α, Root([½, ¼, …])) > 0.0 +function positive(roots::AbstractVector{<:AbstractRoot}) + isempty(roots) && return empty(roots) pd = _positive_direction(first(roots)) return filter(α -> dot(α, pd) > 0.0, roots) end -function Base.show(io::IO, r::Root) - print(io, "Root$(r.coord)") +function Base.show(io::IO, r::AbstractRoot) + return print(io, "Root $(r.coord)") end -function Base.show(io::IO, ::MIME"text/plain", r::Root{N}) where {N} - lngth² = sum(x -> x^2, r.coord) - l = isinteger(sqrt(lngth²)) ? "$(sqrt(lngth²))" : "√$(lngth²)" - print(io, "Root in ℝ^$N of length $l\n", r.coord) +function Base.show(io::IO, ::MIME"text/plain", r::AbstractRoot) + l₂l = ℓ₂length(r) + l = round(Int, l₂l) ≈ l₂l ? "$(round(Int, l₂l))" : "√$(round(Int, l₂l^2))" + return print(io, "Root in ℝ^$(length(r)) of length $l\n", r.coord) end -𝕖(N, i) = Root(ntuple(k -> k == i ? 1 : 0, N)) -𝕆(N, ::Type{T}) where {T} = Root(ntuple(_ -> zero(T), N)) +function reflection(α::AbstractRoot, β::AbstractRoot) + return β - Int(2dot(α, β) // dot(α, α)) * α +end +function cartan(α::AbstractRoot, β::AbstractRoot) + ambient_dim(α) == ambient_dim(β) || throw("incompatible ambient dimensions") + return [ + ℓ₂length(reflection(a, b) - b) / ℓ₂length(a) for a in (α, β), + b in (α, β) + ] +end """ classify_root_system(α, β) Return the symbol of smallest system generated by roots `α` and `β`. -The classification is based only on roots length and -proportionality/orthogonality. +The classification is based only on roots length, +proportionality/orthogonality and Cartan matrix. """ -function classify_root_system(α::AbstractRoot, β::AbstractRoot) - lα, lβ = length(α), length(β) +function classify_root_system( + α::AbstractRoot, + β::AbstractRoot, + long::Tuple{Bool,Bool}, +) if isproportional(α, β) - if lα ≈ lβ ≈ √2 - return :A₁ - elseif lα ≈ lβ ≈ 2.0 + if all(long) return :C₁ + elseif all(.!long) # both short + return :A₁ else + @error "Proportional roots of different length" error("Unknown root system ⟨α, β⟩:\n α = $α\n β = $β") end elseif isorthogonal(α, β) - if lα ≈ lβ ≈ √2 - return Symbol("A₁×A₁") - elseif lα ≈ lβ ≈ 2.0 + if all(long) return Symbol("C₁×C₁") - elseif (lα ≈ 2.0 && lβ ≈ √2) || (lα ≈ √2 && lβ ≈ 2) + elseif all(.!long) # both short + return Symbol("A₁×A₁") + elseif any(long) return Symbol("A₁×C₁") - else - error("Unknown root system ⟨α, β⟩:\n α = $α\n β = $β") end else # ⟨α, β⟩ is 2-dimensional, but they're not orthogonal - if lα ≈ lβ ≈ √2 + a, b, c, d = abs.(cartan(α, β)) + @assert a == d == 2 + b, c = b < c ? (b, c) : (c, b) + if b == c == 1 return :A₂ - elseif (lα ≈ 2.0 && lβ ≈ √2) || (lα ≈ √2 && lβ ≈ 2) + elseif b == 1 && c == 2 return :C₂ + elseif b == 1 && c == 3 + @warn ":G₂? really?" + return :G₂ else + @error a, b, c, d error("Unknown root system ⟨α, β⟩:\n α = $α\n β = $β") end end end -function proportional_root_from_system(Ω::AbstractVector{<:Root}, α::Root) +function proportional_root_from_system( + Ω::AbstractVector{<:AbstractRoot}, + α::AbstractRoot, +) k = findfirst(v -> isproportional(α, v), Ω) if isnothing(k) error("Line L_α not contained in root system Ω:\n α = $α\n Ω = $Ω") @@ -117,25 +110,31 @@ function proportional_root_from_system(Ω::AbstractVector{<:Root}, α::Root) return Ω[k] end -struct Plane{R<:Root} +struct Plane{R<:AbstractRoot} v1::R v2::R vectors::Vector{R} end -Plane(α::R, β::R) where {R<:Root} = - Plane(α, β, [a * α + b * β for a in -3:3 for b in -3:3]) +function Plane(α::AbstractRoot, β::AbstractRoot) + return Plane(α, β, [a * α + b * β for a in -3:3 for b in -3:3]) +end -function Base.in(r::R, plane::Plane{R}) where {R} +function Base.in(r::AbstractRoot, plane::Plane) return any(isproportional(r, v) for v in plane.vectors) end -function classify_sub_root_system( - Ω::AbstractVector{<:Root{N}}, - α::Root{N}, - β::Root{N}, -) where {N} +function _islong(α::AbstractRoot, Ω) + lα = ℓ₂length(α) + return any(r -> lα - ℓ₂length(r) > eps(lα), Ω) +end +function classify_sub_root_system( + Ω::AbstractVector{<:AbstractRoot{N}}, + α::AbstractRoot{N}, + β::AbstractRoot{N}, +) where {N} + @assert 1 ≤ length(unique(ℓ₂length, Ω)) ≤ 2 v = proportional_root_from_system(Ω, α) w = proportional_root_from_system(Ω, β) @@ -146,32 +145,75 @@ function classify_sub_root_system( l = length(subsystem) if l == 1 x = first(subsystem) - return classify_root_system(x, x) + long = _islong(x, Ω) + return classify_root_system(x, -x, (long, long)) elseif l == 2 - return classify_root_system(subsystem...) + x, y = subsystem + return classify_root_system(x, y, (_islong(x, Ω), _islong(y, Ω))) elseif l == 3 - a = classify_root_system(subsystem[1], subsystem[2]) - b = classify_root_system(subsystem[2], subsystem[3]) - c = classify_root_system(subsystem[1], subsystem[3]) + x, y, z = subsystem + l1, l2, l3 = _islong(x, Ω), _islong(y, Ω), _islong(z, Ω) + a = classify_root_system(x, y, (l1, l2)) + b = classify_root_system(y, z, (l2, l3)) + c = classify_root_system(x, z, (l1, l3)) - if a == b == c # it's only A₂ + if :A₂ == a == b == c # it's only A₂ return a end - C = (:C₂, Symbol("C₁×C₁")) - if (a ∈ C && b ∈ C && c ∈ C) && (:C₂ ∈ (a, b, c)) - return :C₂ - end + throw("Unknown subroot system! $((x,y,z))") elseif l == 4 - for i = 1:l - for j = (i+1):l - T = classify_root_system(subsystem[i], subsystem[j]) - T == :C₂ && return :C₂ - end + subtypes = [ + classify_root_system(x, y, (_islong(x, Ω), _islong(y, Ω))) for + x in subsystem for y in subsystem if x ≠ y + ] + if :C₂ in subtypes + return :C₂ end end @error "Unknown root subsystem generated by" α β throw("Unknown root system: $subsystem") end +## concrete implementation: +struct Root{N,T} <: AbstractRoot{N,T} + coord::SVector{N,T} +end + +Root(a) = Root(SVector(a...)) + +# convienience constructors +𝕖(N, i) = Root(ntuple(k -> k == i ? 1 : 0, N)) +𝕆(N, ::Type{T}) where {T} = Root(ntuple(_ -> zero(T), N)) + +function Base.:(==)(r::Root{N}, s::Root{M}) where {M,N} + M == N || return false + r.coord == s.coord || return false + return true +end + +Base.hash(r::Root, h::UInt) = hash(r.coord, hash(Root, h)) + +function Base.:+(r::Root, s::Root) + ambient_dim(r) == ambient_dim(s) || throw("incompatible ambient dimensions") + return Root(r.coord + s.coord) +end + +function Base.:-(r::Root, s::Root) + ambient_dim(r) == ambient_dim(s) || throw("incompatible ambient dimensions") + return Root(r.coord - s.coord) +end +Base.:-(r::Root) = Root(-r.coord) + +Base.:*(a::Number, r::Root) = Root(a * r.coord) + +Base.length(r::Root) = length(r.coord) + +LinearAlgebra.norm(r::Root, p::Real = 2) = norm(r.coord, p) +LinearAlgebra.dot(r::Root, s::Root) = dot(r.coord, s.coord) + +function _positive_direction(α::Root{N}) where {N} + v = α.coord + 1 / (N * 100) * rand(N) + return Root{N,Float64}(v / norm(v, 2)) +end end # of module Roots diff --git a/src/solve.jl b/src/solve.jl index e7df555..c872617 100644 --- a/src/solve.jl +++ b/src/solve.jl @@ -7,12 +7,15 @@ function setwarmstart!(model::JuMP.Model, warmstart) ct => JuMP.all_constraints(model, ct...) for ct in JuMP.list_of_constraint_types(model) ) + try + JuMP.set_start_value.(JuMP.all_variables(model), warmstart.primal) - JuMP.set_start_value.(JuMP.all_variables(model), warmstart.primal) - - for (ct, idx) in pairs(constraint_map) - JuMP.set_start_value.(idx, warmstart.slack[ct]) - JuMP.set_dual_start_value.(idx, warmstart.dual[ct]) + for (ct, idx) in pairs(constraint_map) + JuMP.set_start_value.(idx, warmstart.slack[ct]) + JuMP.set_dual_start_value.(idx, warmstart.dual[ct]) + end + catch e + @warn "Warmstarting was not succesfull!" e end return model end @@ -28,11 +31,10 @@ function getwarmstart(model::JuMP.Model) slack = Dict(k => value.(v) for (k, v) in constraint_map) duals = Dict(k => JuMP.dual.(v) for (k, v) in constraint_map) - return (primal=primal, dual=duals, slack=slack) + return (primal = primal, dual = duals, slack = slack) end -function solve(m::JuMP.Model, optimizer, warmstart=nothing) - +function solve(m::JuMP.Model, optimizer, warmstart = nothing) JuMP.set_optimizer(m, optimizer) MOIU.attach_optimizer(m) @@ -45,8 +47,7 @@ function solve(m::JuMP.Model, optimizer, warmstart=nothing) return status, getwarmstart(m) end -function solve(solverlog::String, m::JuMP.Model, optimizer, warmstart=nothing) - +function solve(solverlog::String, m::JuMP.Model, optimizer, warmstart = nothing) isdir(dirname(solverlog)) || mkpath(dirname(solverlog)) Base.flush(Base.stdout) @@ -55,7 +56,7 @@ function solve(solverlog::String, m::JuMP.Model, optimizer, warmstart=nothing) redirect_stdout(logfile) do status, warmstart = solve(m, optimizer, warmstart) Base.Libc.flush_cstdio() - status, warmstart + return status, warmstart end end diff --git a/src/sos_sdps.jl b/src/sos_sdps.jl index 2f6faea..7dfb306 100644 --- a/src/sos_sdps.jl +++ b/src/sos_sdps.jl @@ -6,15 +6,13 @@ See also [sos_problem_primal](@ref). """ function sos_problem_dual( elt::StarAlgebras.AlgebraElement, - order_unit::StarAlgebras.AlgebraElement=zero(elt); - lower_bound=-Inf + order_unit::StarAlgebras.AlgebraElement = zero(elt); + lower_bound = -Inf, ) @assert parent(elt) == parent(order_unit) algebra = parent(elt) - mstructure = if StarAlgebras._istwisted(algebra.mstructure) - algebra.mstructure - else - StarAlgebras.MTable{true}(basis(algebra), table_size=size(algebra.mstructure)) + moment_matrix = let m = algebra.mstructure + [m[-i, j] for i in axes(m, 1), j in axes(m, 2)] end # 1 variable for every primal constraint @@ -22,60 +20,21 @@ function sos_problem_dual( # Symmetrized: # 1 dual variable for every orbit of G acting on basis model = Model() - @variable model y[1:length(basis(algebra))] - @constraint model λ_dual dot(order_unit, y) == 1 - @constraint(model, psd, y[mstructure] in PSDCone()) + JuMP.@variable(model, y[1:length(basis(algebra))]) + JuMP.@constraint(model, λ_dual, dot(order_unit, y) == 1) + JuMP.@constraint(model, psd, y[moment_matrix] in PSDCone()) if !isinf(lower_bound) throw("Not Implemented yet") - @variable model λ_ub_dual - @objective model Min dot(elt, y) + lower_bound * λ_ub_dual + JuMP.@variable(model, λ_ub_dual) + JuMP.@objective(model, Min, dot(elt, y) + lower_bound * λ_ub_dual) else - @objective model Min dot(elt, y) + JuMP.@objective(model, Min, dot(elt, y)) end return model end -function constraints( - basis::StarAlgebras.AbstractBasis, - mstr::AbstractMatrix{<:Integer}; - augmented::Bool=false, - table_size=size(mstr) -) - cnstrs = [signed(eltype(mstr))[] for _ in basis] - LI = LinearIndices(table_size) - - for ci in CartesianIndices(table_size) - k = LI[ci] - a_star_b = basis[mstr[k]] - push!(cnstrs[basis[a_star_b]], k) - if augmented - # (1-a_star)(1-b) = 1 - a_star - b + a_star_b - - i, j = Tuple(ci) - a, b = basis[i], basis[j] - - push!(cnstrs[basis[one(a)]], k) - push!(cnstrs[basis[StarAlgebras.star(a)]], -k) - push!(cnstrs[basis[b]], -k) - end - end - - return Dict( - basis[i] => ConstraintMatrix(c, table_size..., 1) for (i, c) in pairs(cnstrs) - ) -end - -function constraints(A::StarAlgebras.StarAlgebra; augmented::Bool, twisted::Bool) - mstructure = if StarAlgebras._istwisted(A.mstructure) == twisted - A.mstructure - else - StarAlgebras.MTable{twisted}(basis(A), table_size=size(A.mstructure)) - end - return constraints(basis(A), mstructure, augmented=augmented) -end - """ sos_problem_primal(X, [u = zero(X); upper_bound=Inf]) Formulate sum of squares decomposition problem for `X - λ·u`. @@ -96,9 +55,10 @@ The default `u = zero(X)` formulates a simple feasibility problem. """ function sos_problem_primal( elt::StarAlgebras.AlgebraElement, - order_unit::StarAlgebras.AlgebraElement=zero(elt); - upper_bound=Inf, - augmented::Bool=iszero(StarAlgebras.aug(elt)) && iszero(StarAlgebras.aug(order_unit)) + order_unit::StarAlgebras.AlgebraElement = zero(elt); + upper_bound = Inf, + augmented::Bool = iszero(StarAlgebras.aug(elt)) && + iszero(StarAlgebras.aug(order_unit)), ) @assert parent(elt) === parent(order_unit) @@ -111,7 +71,7 @@ function sos_problem_primal( @warn "Setting `upper_bound` together with zero `order_unit` has no effect" end - A = constraints(parent(elt), augmented=augmented, twisted=true) + A = constraints(parent(elt); augmented = augmented) if !iszero(order_unit) λ = JuMP.@variable(model, λ) @@ -135,11 +95,11 @@ end function invariant_constraint!( result::AbstractMatrix, basis::StarAlgebras.AbstractBasis, - cnstrs::AbstractDict{K,CM}, + cnstrs::AbstractDict{K,<:ConstraintMatrix}, invariant_vec::SparseVector, -) where {K,CM<:ConstraintMatrix} +) where {K} result .= zero(eltype(result)) - for i in SparseArrays.nonzeroinds(invariant_vec) + @inbounds for i in SparseArrays.nonzeroinds(invariant_vec) g = basis[i] A = cnstrs[g] for (idx, v) in nzpairs(A) @@ -149,25 +109,47 @@ function invariant_constraint!( return result end +function invariant_constraint(basis, cnstrs, invariant_vec) + I = UInt32[] + J = UInt32[] + V = Float64[] + _M = first(values(cnstrs)) + CI = CartesianIndices(_M) + @inbounds for i in SparseArrays.nonzeroinds(invariant_vec) + g = basis[i] + A = cnstrs[g] + for (idx, v) in nzpairs(A) + ci = CI[idx] + push!(I, ci[1]) + push!(J, ci[2]) + push!(V, invariant_vec[i] * v) + end + end + return sparse(I, J, V, size(_M)...) +end + function isorth_projection(ds::SymbolicWedderburn.DirectSummand) U = SymbolicWedderburn.image_basis(ds) return isapprox(U * U', I) end -sos_problem_primal( +function sos_problem_primal( elt::StarAlgebras.AlgebraElement, wedderburn::WedderburnDecomposition; - kwargs... -) = sos_problem_primal(elt, zero(elt), wedderburn; kwargs...) + kwargs..., +) + return sos_problem_primal(elt, zero(elt), wedderburn; kwargs...) +end function __fast_recursive_dot!( res::JuMP.AffExpr, Ps::AbstractArray{<:AbstractMatrix{<:JuMP.VariableRef}}, - Ms::AbstractArray{<:AbstractSparseMatrix}; + Ms::AbstractArray{<:AbstractSparseMatrix}, + weights, ) @assert length(Ps) == length(Ms) - for (A, P) in zip(Ms, Ps) + for (w, A, P) in zip(weights, Ms, Ps) iszero(Ms) && continue rows = rowvals(A) vals = nonzeros(A) @@ -175,13 +157,21 @@ function __fast_recursive_dot!( for i in nzrange(A, cidx) ridx = rows[i] val = vals[i] - JuMP.add_to_expression!(res, P[ridx, cidx], val) + JuMP.add_to_expression!(res, P[ridx, cidx], w * val) end end end return res end +function _dot( + Ps::AbstractArray{<:AbstractMatrix{<:JuMP.VariableRef}}, + Ms::AbstractArray{<:AbstractMatrix{T}}, + weights = Iterators.repeated(one(T), length(Ms)), +) where {T} + return __fast_recursive_dot!(JuMP.AffExpr(), Ps, Ms, weights) +end + import ProgressMeter __show_itrs(n, total) = () -> [(Symbol("constraint"), "$n/$total")] @@ -189,21 +179,38 @@ function sos_problem_primal( elt::StarAlgebras.AlgebraElement, orderunit::StarAlgebras.AlgebraElement, wedderburn::WedderburnDecomposition; - upper_bound=Inf, - augmented=iszero(StarAlgebras.aug(elt)) && iszero(StarAlgebras.aug(orderunit)), - check_orthogonality=true, - show_progress=false + upper_bound = Inf, + augmented = iszero(StarAlgebras.aug(elt)) && + iszero(StarAlgebras.aug(orderunit)), + check_orthogonality = true, + show_progress = false, ) - @assert parent(elt) === parent(orderunit) if check_orthogonality if any(!isorth_projection, direct_summands(wedderburn)) - error("Wedderburn decomposition contains a non-orthogonal projection") + error( + "Wedderburn decomposition contains a non-orthogonal projection", + ) end end + id_one = findfirst(invariant_vectors(wedderburn)) do v + b = basis(parent(elt)) + return sparsevec([b[one(first(b))]], [1 // 1], length(v)) == v + end + + prog = ProgressMeter.Progress( + length(invariant_vectors(wedderburn)); + dt = 1, + desc = "Adding constraints: ", + enabled = show_progress, + barlen = 60, + showspeed = true, + ) + feasibility_problem = iszero(orderunit) + # problem creation starts here model = JuMP.Model() if !feasibility_problem # add λ or not? λ = JuMP.@variable(model, λ) @@ -217,58 +224,52 @@ function sos_problem_primal( end end - P = map(direct_summands(wedderburn)) do ds + # semidefinite constraints as described by wedderburn + Ps = map(direct_summands(wedderburn)) do ds dim = size(ds, 1) P = JuMP.@variable(model, [1:dim, 1:dim], Symmetric) JuMP.@constraint(model, P in PSDCone()) - P + return P end - begin # preallocating + begin # Ms are preallocated for the constraints loop T = eltype(wedderburn) - Ms = [spzeros.(T, size(p)...) for p in P] - M_orb = zeros(T, size(parent(elt).mstructure)...) + Ms = [spzeros.(T, size(p)...) for p in Ps] + _eps = 10 * eps(T) * max(size(parent(elt).mstructure)...) end - X = convert(Vector{T}, StarAlgebras.coeffs(elt)) - U = convert(Vector{T}, StarAlgebras.coeffs(orderunit)) + X = StarAlgebras.coeffs(elt) + U = StarAlgebras.coeffs(orderunit) # defining constraints based on the multiplicative structure - cnstrs = constraints(parent(elt), augmented=augmented, twisted=true) - - prog = ProgressMeter.Progress( - length(invariant_vectors(wedderburn)), - dt=1, - desc="Adding constraints... ", - enabled=show_progress, - barlen=60, - showspeed=true - ) + cnstrs = constraints(parent(elt); augmented = augmented) + # adding linear constraints: one per orbit for (i, iv) in enumerate(invariant_vectors(wedderburn)) - ProgressMeter.next!(prog, showvalues=__show_itrs(i, prog.n)) + ProgressMeter.next!(prog; showvalues = __show_itrs(i, prog.n)) + augmented && i == id_one && continue + # i == 500 && break x = dot(X, iv) u = dot(U, iv) - M_orb = invariant_constraint!(M_orb, basis(parent(elt)), cnstrs, iv) - Ms = SymbolicWedderburn.diagonalize!(Ms, M_orb, wedderburn) - SparseArrays.droptol!.(Ms, 10 * eps(T) * max(size(M_orb)...)) - - # @info [nnz(m) / length(m) for m in Ms] + spM_orb = invariant_constraint(basis(parent(elt)), cnstrs, iv) + Ms = SymbolicWedderburn.diagonalize!( + Ms, + spM_orb, + wedderburn; + trace_preserving = true, + ) + for M in Ms + SparseArrays.droptol!(M, _eps) + end if feasibility_problem - JuMP.@constraint( - model, - x == __fast_recursive_dot!(JuMP.AffExpr(), P, Ms) - ) + JuMP.@constraint(model, x == _dot(Ps, Ms)) else - JuMP.@constraint( - model, - x - λ * u == __fast_recursive_dot!(JuMP.AffExpr(), P, Ms) - ) + JuMP.@constraint(model, x - λ * u == _dot(Ps, Ms)) end end ProgressMeter.finish!(prog) - return model, P + return model, Ps end diff --git a/test/1703.09680.jl b/test/1703.09680.jl index 6ed0f79..e801ab9 100644 --- a/test/1703.09680.jl +++ b/test/1703.09680.jl @@ -1,9 +1,8 @@ @testset "1703.09680 Examples" begin - @testset "SL(2,Z)" begin N = 2 G = MatrixGroups.SpecialLinearGroup{N}(Int8) - RG, S, sizes = PropertyT.group_algebra(G, halfradius=2, twisted=true) + RG, S, sizes = PropertyT.group_algebra(G; halfradius = 2) Δ = let RG = RG, S = S RG(length(S)) - sum(RG(s) for s in S) @@ -15,15 +14,15 @@ status, certified, λ = check_positivity( elt, - unit, - upper_bound=ub, - halfradius=2, - optimizer=scs_optimizer( - eps=1e-10, - max_iters=5_000, - accel=50, - alpha=1.9, - ) + unit; + upper_bound = ub, + halfradius = 2, + optimizer = scs_optimizer(; + eps = 1e-10, + max_iters = 5_000, + accel = 50, + alpha = 1.9, + ), ) @test status == JuMP.ALMOST_OPTIMAL @@ -33,8 +32,10 @@ @testset "SL(3,F₅)" begin N = 3 - G = MatrixGroups.SpecialLinearGroup{N}(SymbolicWedderburn.Characters.FiniteFields.GF{5}) - RG, S, sizes = PropertyT.group_algebra(G, halfradius=2, twisted=true) + G = MatrixGroups.SpecialLinearGroup{N}( + SymbolicWedderburn.Characters.FiniteFields.GF{5}, + ) + RG, S, sizes = PropertyT.group_algebra(G; halfradius = 2) Δ = let RG = RG, S = S RG(length(S)) - sum(RG(s) for s in S) @@ -46,15 +47,15 @@ status, certified, λ = check_positivity( elt, - unit, - upper_bound=ub, - halfradius=2, - optimizer=scs_optimizer( - eps=1e-10, - max_iters=5_000, - accel=50, - alpha=1.9, - ) + unit; + upper_bound = ub, + halfradius = 2, + optimizer = scs_optimizer(; + eps = 1e-10, + max_iters = 5_000, + accel = 50, + alpha = 1.9, + ), ) @test status == JuMP.OPTIMAL @@ -62,12 +63,15 @@ @test λ > 1 m = PropertyT.sos_problem_dual(elt, unit) - PropertyT.solve(m, cosmo_optimizer( - eps=1e-6, - max_iters=5_000, - accel=50, - alpha=1.9, - )) + PropertyT.solve( + m, + cosmo_optimizer(; + eps = 1e-6, + max_iters = 5_000, + accel = 50, + alpha = 1.9, + ), + ) @test JuMP.termination_status(m) in (JuMP.ALMOST_OPTIMAL, JuMP.OPTIMAL) @test JuMP.objective_value(m) ≈ 1.5 atol = 1e-2 @@ -76,7 +80,7 @@ @testset "SAut(F₂)" begin N = 2 G = SpecialAutomorphismGroup(FreeGroup(N)) - RG, S, sizes = PropertyT.group_algebra(G, halfradius=2, twisted=true) + RG, S, sizes = PropertyT.group_algebra(G; halfradius = 2) Δ = let RG = RG, S = S RG(length(S)) - sum(RG(s) for s in S) @@ -88,53 +92,46 @@ status, certified, λ = check_positivity( elt, - unit, - upper_bound=ub, - halfradius=2, - optimizer=scs_optimizer( - eps=1e-10, - max_iters=5_000, - accel=50, - alpha=1.9, - ) + unit; + upper_bound = ub, + halfradius = 2, + optimizer = scs_optimizer(; + eps = 1e-10, + max_iters = 5_000, + accel = 50, + alpha = 1.9, + ), ) @test status == JuMP.ALMOST_OPTIMAL @test λ < 0 @test !certified - @time sos_problem = - PropertyT.sos_problem_primal(elt, upper_bound=ub) + @time sos_problem = PropertyT.sos_problem_primal(elt; upper_bound = ub) status, _ = PropertyT.solve( sos_problem, - cosmo_optimizer( - eps=1e-7, - max_iters=10_000, - accel=0, - alpha=1.9, - ) + cosmo_optimizer(; + eps = 1e-7, + max_iters = 10_000, + accel = 0, + alpha = 1.9, + ), ) @test status == JuMP.OPTIMAL P = JuMP.value.(sos_problem[:P]) Q = real.(sqrt(P)) - certified, λ_cert = PropertyT.certify_solution( - elt, - zero(elt), - 0.0, - Q, - halfradius=2, - ) + certified, λ_cert = + PropertyT.certify_solution(elt, zero(elt), 0.0, Q; halfradius = 2) @test !certified @test λ_cert < 0 - end @testset "SL(3,Z) has (T)" begin n = 3 SL = MatrixGroups.SpecialLinearGroup{n}(Int8) - RSL, S, sizes = PropertyT.group_algebra(SL, halfradius=2, twisted=true) + RSL, S, sizes = PropertyT.group_algebra(SL; halfradius = 2) Δ = RSL(length(S)) - sum(RSL(s) for s in S) @@ -145,18 +142,18 @@ opt_problem = PropertyT.sos_problem_primal( elt, - unit, - upper_bound=ub, - augmented=false, + unit; + upper_bound = ub, + augmented = false, ) status, _ = PropertyT.solve( opt_problem, - cosmo_optimizer( - eps=1e-10, - max_iters=10_000, - accel=0, - alpha=1.5, + cosmo_optimizer(; + eps = 1e-10, + max_iters = 10_000, + accel = 0, + alpha = 1.5, ), ) @@ -170,13 +167,13 @@ elt, unit, λ, - Q, - halfradius=2, - augmented=false, + Q; + halfradius = 2, + augmented = false, ) @test certified - @test isapprox(λ_cert, λ, rtol=1e-5) + @test isapprox(λ_cert, λ, rtol = 1e-5) end @testset "augmented formulation" begin @@ -186,18 +183,18 @@ opt_problem = PropertyT.sos_problem_primal( elt, - unit, - upper_bound=ub, - augmented=true, + unit; + upper_bound = ub, + augmented = true, ) status, _ = PropertyT.solve( opt_problem, - scs_optimizer( - eps=1e-10, - max_iters=10_000, - accel=-10, - alpha=1.5, + scs_optimizer(; + eps = 1e-10, + max_iters = 10_000, + accel = -10, + alpha = 1.5, ), ) @@ -210,13 +207,13 @@ elt, unit, λ, - Q, - halfradius=2, - augmented=true, + Q; + halfradius = 2, + augmented = true, ) @test certified - @test isapprox(λ_cert, λ, rtol=1e-5) + @test isapprox(λ_cert, λ, rtol = 1e-5) @test λ_cert > 2 // 10 end end diff --git a/test/1712.07167.jl b/test/1712.07167.jl index be479d9..abc19b8 100644 --- a/test/1712.07167.jl +++ b/test/1712.07167.jl @@ -1,9 +1,9 @@ @testset "1712.07167 Examples" begin - @testset "SAut(F₃)" begin N = 3 G = SpecialAutomorphismGroup(FreeGroup(N)) - RG, S, sizes = PropertyT.group_algebra(G, halfradius=2, twisted=true) + @info "running tests for" G + RG, S, sizes = PropertyT.group_algebra(G; halfradius = 2) P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1))) Σ = PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P) @@ -15,6 +15,7 @@ basis(RG), StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[2]]), ) + @info wd Δ = let RG = RG, S = S RG(length(S)) - sum(RG(s) for s in S) @@ -27,14 +28,14 @@ status, certified, λ_cert = check_positivity( elt, unit, - wd, - upper_bound=ub, - halfradius=2, - optimizer=cosmo_optimizer( - eps=1e-7, - max_iters=10_000, - accel=50, - alpha=1.9, + wd; + upper_bound = ub, + halfradius = 2, + optimizer = cosmo_optimizer(; + eps = 1e-7, + max_iters = 10_000, + accel = 50, + alpha = 1.9, ), ) @@ -47,7 +48,8 @@ n = 3 SL = MatrixGroups.SpecialLinearGroup{n}(Int8) - RSL, S, sizes = PropertyT.group_algebra(SL, halfradius=2, twisted=true) + @info "running tests for" SL + RSL, S, sizes = PropertyT.group_algebra(SL; halfradius = 2) Δ = RSL(length(S)) - sum(RSL(s) for s in S) @@ -62,6 +64,7 @@ basis(RSL), StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]]), ) + @info wd elt = Δ^2 unit = Δ @@ -71,8 +74,8 @@ elt, unit, wd, - upper_bound=ub, - augmented=false, + upper_bound = ub, + augmented = false, ) wdfl = SymbolicWedderburn.WedderburnDecomposition( @@ -86,18 +89,18 @@ model, varP = PropertyT.sos_problem_primal( elt, unit, - wdfl, - upper_bound=ub, - augmented=false, + wdfl; + upper_bound = ub, + augmented = false, ) status, warm = PropertyT.solve( model, - cosmo_optimizer( - eps=1e-10, - max_iters=20_000, - accel=50, - alpha=1.9, + cosmo_optimizer(; + eps = 1e-10, + max_iters = 20_000, + accel = 50, + alpha = 1.9, ), ) @@ -105,34 +108,34 @@ status, _ = PropertyT.solve( model, - scs_optimizer( - eps=1e-10, - max_iters=100, - accel=-20, - alpha=1.2, + scs_optimizer(; + eps = 1e-10, + max_iters = 100, + accel = -20, + alpha = 1.2, ), - warm + warm, ) @test status == JuMP.OPTIMAL Q = @time let varP = varP Qs = map(varP) do P - real.(sqrt(JuMP.value.(P))) + return real.(sqrt(JuMP.value.(P))) end PropertyT.reconstruct(Qs, wdfl) end λ = JuMP.value(model[:λ]) - sos = PropertyT.compute_sos(parent(elt), Q; augmented=false) + sos = PropertyT.compute_sos(parent(elt), Q; augmented = false) certified, λ_cert = PropertyT.certify_solution( elt, unit, λ, - Q, - halfradius=2, - augmented=false, + Q; + halfradius = 2, + augmented = false, ) @test certified @@ -155,22 +158,23 @@ basis(RSL), StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]]), ) + @info wdfl opt_problem, varP = PropertyT.sos_problem_primal( elt, unit, - wdfl, - upper_bound=ub, + wdfl; + upper_bound = ub, # augmented = true # since both elt and unit are augmented ) status, _ = PropertyT.solve( opt_problem, - scs_optimizer( - eps=1e-8, - max_iters=20_000, - accel=0, - alpha=1.9, + scs_optimizer(; + eps = 1e-8, + max_iters = 20_000, + accel = 0, + alpha = 1.9, ), ) @@ -178,7 +182,7 @@ Q = @time let varP = varP Qs = map(varP) do P - real.(sqrt(JuMP.value.(P))) + return real.(sqrt(JuMP.value.(P))) end PropertyT.reconstruct(Qs, wdfl) end @@ -187,8 +191,8 @@ elt, unit, JuMP.objective_value(opt_problem), - Q, - halfradius=2, + Q; + halfradius = 2, # augmented = true # since both elt and unit are augmented ) diff --git a/test/1812.03456.jl b/test/1812.03456.jl index b0d9482..383e01e 100644 --- a/test/1812.03456.jl +++ b/test/1812.03456.jl @@ -21,8 +21,9 @@ using SparseArrays @testset "Sq, Adj, Op in SL(4,Z)" begin N = 4 G = MatrixGroups.SpecialLinearGroup{N}(Int8) + @info "running tests for" G - RG, S, sizes = PropertyT.group_algebra(G, halfradius=2, twisted=true) + RG, S, sizes = PropertyT.group_algebra(G; halfradius = 2) Δ = let RG = RG, S = S RG(length(S)) - sum(RG(s) for s in S) @@ -39,6 +40,7 @@ using SparseArrays basis(RG), StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[2]]), ) + @info wd ivs = SymbolicWedderburn.invariant_vectors(wd) sq, adj, op = PropertyT.SqAdjOp(RG, N) @@ -82,7 +84,7 @@ using SparseArrays @testset "SAut(F₃)" begin n = 3 G = SpecialAutomorphismGroup(FreeGroup(n)) - RG, S, sizes = PropertyT.group_algebra(G, halfradius=2, twisted=true) + RG, S, sizes = PropertyT.group_algebra(G; halfradius = 2) sq, adj, op = PropertyT.SqAdjOp(RG, n) @test sq(one(G)) == 216 @@ -98,7 +100,8 @@ end n = 3 G = MatrixGroups.SpecialLinearGroup{n}(Int8) - RG, S, sizes = PropertyT.group_algebra(G, halfradius=2, twisted=true) + @info "running tests for" G + RG, S, sizes = PropertyT.group_algebra(G; halfradius = 2) Δ = RG(length(S)) - sum(RG(s) for s in S) @@ -113,6 +116,7 @@ end basis(RG), StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[2]]), ) + @info wd sq, adj, op = PropertyT.SqAdjOp(RG, n) @@ -123,10 +127,10 @@ end status, certified, λ_cert = check_positivity( elt, Δ, - wd, - upper_bound=UB, - halfradius=2, - optimizer=cosmo_optimizer(accel=50, alpha=1.9) + wd; + upper_bound = UB, + halfradius = 2, + optimizer = cosmo_optimizer(; accel = 50, alpha = 1.9), ) @test status == JuMP.OPTIMAL @test certified @@ -140,10 +144,10 @@ end status, certified, λ_cert = check_positivity( elt, Δ, - wd, - upper_bound=UB, - halfradius=2, - optimizer=cosmo_optimizer(accel=50, alpha=1.9) + wd; + upper_bound = UB, + halfradius = 2, + optimizer = cosmo_optimizer(; accel = 50, alpha = 1.9), ) @test status == JuMP.OPTIMAL @test certified @@ -152,10 +156,11 @@ end m, _ = PropertyT.sos_problem_primal(elt, wd) PropertyT.solve( m, - scs_optimizer(max_iters=5000, accel=50, alpha=1.9) + scs_optimizer(; max_iters = 5000, accel = 50, alpha = 1.9), ) - @test JuMP.termination_status(m) in (JuMP.ALMOST_OPTIMAL, JuMP.OPTIMAL, JuMP.ITERATION_LIMIT) + @test JuMP.termination_status(m) in + (JuMP.ALMOST_OPTIMAL, JuMP.OPTIMAL, JuMP.ITERATION_LIMIT) @test abs(JuMP.objective_value(m)) < 1e-3 end @@ -168,10 +173,10 @@ end status, certified, λ_cert = check_positivity( elt, Δ, - wd, - upper_bound=UB, - halfradius=2, - optimizer=cosmo_optimizer(accel=50, alpha=1.9) + wd; + upper_bound = UB, + halfradius = 2, + optimizer = scs_optimizer(; accel = 50, alpha = 1.9), ) @test status == JuMP.OPTIMAL @test !certified @@ -183,7 +188,8 @@ end n = 4 G = MatrixGroups.SpecialLinearGroup{n}(Int8) - RG, S, sizes = PropertyT.group_algebra(G, halfradius=2, twisted=true) + @info "running tests for" G + RG, S, sizes = PropertyT.group_algebra(G; halfradius = 2) Δ = RG(length(S)) - sum(RG(s) for s in S) @@ -198,6 +204,7 @@ end basis(RG), StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[2]]), ) + @info wd sq, adj, op = PropertyT.SqAdjOp(RG, n) @@ -208,10 +215,10 @@ end status, certified, λ_cert = check_positivity( elt, Δ, - wd, - upper_bound=UB, - halfradius=2, - optimizer=cosmo_optimizer(accel=50, alpha=1.9) + wd; + upper_bound = UB, + halfradius = 2, + optimizer = cosmo_optimizer(; accel = 50, alpha = 1.9), ) @test status == JuMP.OPTIMAL @test certified @@ -225,10 +232,10 @@ end status, certified, λ_cert = check_positivity( elt, Δ, - wd, - upper_bound=UB, - halfradius=2, - optimizer=cosmo_optimizer(accel=50, alpha=1.9) + wd; + upper_bound = UB, + halfradius = 2, + optimizer = cosmo_optimizer(; accel = 50, alpha = 1.9), ) @test status == JuMP.OPTIMAL @test certified @@ -242,10 +249,10 @@ end status, certified, λ_cert = check_positivity( elt, Δ, - wd, - upper_bound=UB, - halfradius=2, - optimizer=cosmo_optimizer(accel=50, alpha=1.9) + wd; + upper_bound = UB, + halfradius = 2, + optimizer = cosmo_optimizer(; accel = 50, alpha = 1.9), ) @test status == JuMP.OPTIMAL @test !certified diff --git a/test/Chevalley.jl b/test/Chevalley.jl new file mode 100644 index 0000000..e4fa863 --- /dev/null +++ b/test/Chevalley.jl @@ -0,0 +1,168 @@ +countmap(v) = countmap(identity, v) +function countmap(f, v) + counts = Dict{eltype(f(first(v))),Int}() + for x in v + fx = f(x) + counts[fx] = get!(counts, fx, 0) + 1 + end + return counts +end + +@testset "classify_root_system" begin + α = PropertyT.Roots.Root([1, -1, 0]) + β = PropertyT.Roots.Root([0, 1, -1]) + γ = PropertyT.Roots.Root([2, 0, 0]) + + @test PropertyT.Roots.classify_root_system(α, β, (false, false)) == :A₂ + @test PropertyT.Roots.classify_root_system(α, γ, (false, true)) == :C₂ + @test PropertyT.Roots.classify_root_system(β, γ, (false, true)) == + Symbol("A₁×C₁") +end + +@testset "Exceptional root systems" begin + @testset "F4" begin + F4 = let Σ = PermutationGroups.PermGroup(perm"(1,2,3,4)", perm"(1,2)") + long = let x = (1, 1, 0, 0) .// 1 + PropertyT.Roots.Root.( + union( + (x^g for g in Σ), + ((x .* (-1, 1, 1, 1))^g for g in Σ), + ((-1 .* x)^g for g in Σ), + ), + ) + end + + short = let x = (1, 0, 0, 0) .// 1 + PropertyT.Roots.Root.( + union((x^g for g in Σ), ((-1 .* x)^g for g in Σ)) + ) + end + + signs = collect(Iterators.product(fill([-1, +1], 4)...)) + halfs = let x = (1, 1, 1, 1) .// 2 + PropertyT.Roots.Root.(union(x .* sgn for sgn in signs)) + end + + union(long, short, halfs) + end + + @test length(F4) == 48 + + a = F4[1] + @test isapprox(PropertyT.Roots.ℓ₂length(a), sqrt(2)) + b = F4[6] + @test isapprox(PropertyT.Roots.ℓ₂length(b), sqrt(2)) + c = a + b + @test isapprox(PropertyT.Roots.ℓ₂length(c), 2.0) + @test PropertyT.Roots.classify_root_system(b, c, (false, true)) == :C₂ + + long = F4[findfirst(r -> PropertyT.Roots.ℓ₂length(r) == sqrt(2), F4)] + short = F4[findfirst(r -> PropertyT.Roots.ℓ₂length(r) == 1.0, F4)] + + subtypes = Set([:C₂, :A₂, Symbol("A₁×C₁")]) + + let Ω = F4, α = long + counts = countmap([ + PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for + γ in Ω if !PropertyT.Roots.isproportional(α, γ) + ]) + @test Set(keys(counts)) == subtypes + d, r = divrem(counts[:C₂], 6) + @test r == 0 && d == 3 + + d, r = divrem(counts[:A₂], 4) + @test r == 0 && d == 4 + end + + let Ω = F4, α = short + counts = countmap([ + PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for + γ in Ω if !PropertyT.Roots.isproportional(α, γ) + ]) + @test Set(keys(counts)) == subtypes + d, r = divrem(counts[:C₂], 6) + @test r == 0 && d == 3 + + d, r = divrem(counts[:A₂], 4) + @test r == 0 && d == 4 + end + end + + @testset "E6-7-8 exceptional root systems" begin + E8 = + let Σ = PermutationGroups.PermGroup( + perm"(1,2,3,4,5,6,7,8)", + perm"(1,2)", + ) + long = let x = (1, 1, 0, 0, 0, 0, 0, 0) .// 1 + PropertyT.Roots.Root.( + union( + (x^g for g in Σ), + ((x .* (-1, 1, 1, 1, 1, 1, 1, 1))^g for g in Σ), + ((-1 .* x)^g for g in Σ), + ), + ) + end + + signs = collect( + p for p in Iterators.product(fill([-1, +1], 8)...) if + iseven(count(==(-1), p)) + ) + halfs = let x = (1, 1, 1, 1, 1, 1, 1, 1) .// 2 + rts = unique(PropertyT.Roots.Root(x .* sgn) for sgn in signs) + end + + union(long, halfs) + end + + subtypes = Set([:A₂, Symbol("A₁×A₁")]) + + @testset "E8" begin + @test length(E8) == 240 + @test all(r -> PropertyT.Roots.ℓ₂length(r) ≈ sqrt(2), E8) + + let Ω = E8, α = first(Ω) + counts = countmap([ + PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for + γ in Ω if !PropertyT.Roots.isproportional(α, γ) + ]) + @test Set(keys(counts)) == subtypes + d, r = divrem(counts[:A₂], 4) + @test r == 0 && d == 28 + end + end + @testset "E7" begin + E7 = filter(r -> iszero(sum(r.coord)), E8) + @test length(E7) == 126 + + let Ω = E7, α = first(Ω) + counts = countmap([ + PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for + γ in Ω if !PropertyT.Roots.isproportional(α, γ) + ]) + @test Set(keys(counts)) == subtypes + d, r = divrem(counts[:A₂], 4) + @test r == 0 && d == 16 + end + end + + @testset "E6" begin + E6 = filter( + r -> r.coord[end] == r.coord[end-1] == r.coord[end-2], + E8, + ) + @test length(E6) == 72 + + let Ω = E6, α = first(Ω) + counts = countmap([ + PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for + γ in Ω if !PropertyT.Roots.isproportional(α, γ) + ]) + @test Set(keys(counts)) == subtypes + d, r = divrem(counts[:A₂], 4) + @info d, r + @test r == 0 && d == 10 + end + end + end +end diff --git a/test/actions.jl b/test/actions.jl index af7d123..08e6a03 100644 --- a/test/actions.jl +++ b/test/actions.jl @@ -3,7 +3,7 @@ function test_action(basis, group, act) return @testset "action definition" begin @test all(basis) do b e = one(group) - action(act, e, b) == b + return action(act, e, b) == b end a = let a = rand(basis) @@ -30,12 +30,12 @@ function test_action(basis, group, act) @test all([(g, h) for g in group for h in group]) do (g, h) x = action(act, h, action(act, g, a)) y = action(act, g * h, a) - x == y + return x == y end if act isa SymbolicWedderburn.ByPermutations @test all(basis) do b - action(act, g, b) ∈ basis && action(act, h, b) ∈ basis + return action(act, g, b) ∈ basis && action(act, h, b) ∈ basis end end end @@ -44,21 +44,18 @@ end ## Testing @testset "Actions on SL(3,ℤ)" begin - n = 3 SL = MatrixGroups.SpecialLinearGroup{n}(Int8) - RSL, S, sizes = PropertyT.group_algebra(SL, halfradius=2, twisted=true) + RSL, S, sizes = PropertyT.group_algebra(SL; halfradius = 2) @testset "Permutation action" begin - Γ = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1))) ΓpA = PropertyT.action_by_conjugation(SL, Γ) test_action(basis(RSL), Γ, ΓpA) @testset "mps is successful" begin - charsΓ = SymbolicWedderburn.Character{ Rational{Int}, @@ -66,9 +63,9 @@ end RΓ = SymbolicWedderburn._group_algebra(Γ) - @time mps, simple = + @time mps, ranks = SymbolicWedderburn.minimal_projection_system(charsΓ, RΓ) - @test all(simple) + @test all(isone, ranks) end @testset "Wedderburn decomposition" begin @@ -77,17 +74,17 @@ end Γ, ΓpA, basis(RSL), - StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]]) + StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]]), ) @test length(invariant_vectors(wd)) == 918 - @test SymbolicWedderburn.size.(direct_summands(wd), 1) == [40, 23, 18] + @test SymbolicWedderburn.size.(direct_summands(wd), 1) == + [40, 23, 18] @test all(issimple, direct_summands(wd)) end end @testset "Wreath action" begin - Γ = let P = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1))) PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P) end @@ -97,7 +94,6 @@ end test_action(basis(RSL), Γ, ΓpA) @testset "mps is successful" begin - charsΓ = SymbolicWedderburn.Character{ Rational{Int}, @@ -105,9 +101,9 @@ end RΓ = SymbolicWedderburn._group_algebra(Γ) - @time mps, simple = + @time mps, ranks = SymbolicWedderburn.minimal_projection_system(charsΓ, RΓ) - @test all(simple) + @test all(isone, ranks) end @testset "Wedderburn decomposition" begin @@ -116,32 +112,30 @@ end Γ, ΓpA, basis(RSL), - StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]]) + StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]]), ) @test length(invariant_vectors(wd)) == 247 - @test SymbolicWedderburn.size.(direct_summands(wd), 1) == [14, 9, 6, 14, 12] + @test SymbolicWedderburn.size.(direct_summands(wd), 1) == + [14, 9, 6, 14, 12] @test all(issimple, direct_summands(wd)) end end end @testset "Actions on SAut(F4)" begin - n = 4 SAutFn = SpecialAutomorphismGroup(FreeGroup(n)) - RSAutFn, S, sizes = PropertyT.group_algebra(SAutFn, halfradius=1, twisted=true) + RSAutFn, S, sizes = PropertyT.group_algebra(SAutFn; halfradius = 1) @testset "Permutation action" begin - Γ = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1))) ΓpA = PropertyT.action_by_conjugation(SAutFn, Γ) test_action(basis(RSAutFn), Γ, ΓpA) @testset "mps is successful" begin - charsΓ = SymbolicWedderburn.Character{ Rational{Int}, @@ -149,9 +143,9 @@ end RΓ = SymbolicWedderburn._group_algebra(Γ) - @time mps, simple = + @time mps, ranks = SymbolicWedderburn.minimal_projection_system(charsΓ, RΓ) - @test all(simple) + @test all(isone, ranks) end @testset "Wedderburn decomposition" begin @@ -160,17 +154,17 @@ end Γ, ΓpA, basis(RSAutFn), - StarAlgebras.Basis{UInt16}(@view basis(RSAutFn)[1:sizes[1]]) + StarAlgebras.Basis{UInt16}(@view basis(RSAutFn)[1:sizes[1]]), ) @test length(invariant_vectors(wd)) == 93 - @test SymbolicWedderburn.size.(direct_summands(wd), 1) == [4, 8, 5, 4] + @test SymbolicWedderburn.size.(direct_summands(wd), 1) == + [4, 8, 5, 4] @test all(issimple, direct_summands(wd)) end end @testset "Wreath action" begin - Γ = let P = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1))) PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P) end @@ -180,7 +174,6 @@ end test_action(basis(RSAutFn), Γ, ΓpA) @testset "mps is successful" begin - charsΓ = SymbolicWedderburn.Character{ Rational{Int}, @@ -188,9 +181,9 @@ end RΓ = SymbolicWedderburn._group_algebra(Γ) - @time mps, simple = + @time mps, ranks = SymbolicWedderburn.minimal_projection_system(charsΓ, RΓ) - @test all(simple) + @test all(isone, ranks) end @testset "Wedderburn decomposition" begin @@ -199,11 +192,12 @@ end Γ, ΓpA, basis(RSAutFn), - StarAlgebras.Basis{UInt16}(@view basis(RSAutFn)[1:sizes[1]]) + StarAlgebras.Basis{UInt16}(@view basis(RSAutFn)[1:sizes[1]]), ) @test length(invariant_vectors(wd)) == 18 - @test SymbolicWedderburn.size.(direct_summands(wd), 1) == [1, 1, 2, 2, 1, 2, 2, 1] + @test SymbolicWedderburn.size.(direct_summands(wd), 1) == + [1, 1, 2, 2, 1, 2, 2, 1] @test all(issimple, direct_summands(wd)) end end diff --git a/test/check_positivity.jl b/test/check_positivity.jl index 974077b..d57e80f 100644 --- a/test/check_positivity.jl +++ b/test/check_positivity.jl @@ -1,6 +1,12 @@ -function check_positivity(elt, unit; upper_bound=Inf, halfradius=2, optimizer) +function check_positivity( + elt, + unit; + upper_bound = Inf, + halfradius = 2, + optimizer, +) @time sos_problem = - PropertyT.sos_problem_primal(elt, unit, upper_bound=upper_bound) + PropertyT.sos_problem_primal(elt, unit; upper_bound = upper_bound) status, _ = PropertyT.solve(sos_problem, optimizer) P = JuMP.value.(sos_problem[:P]) @@ -9,16 +15,23 @@ function check_positivity(elt, unit; upper_bound=Inf, halfradius=2, optimizer) elt, unit, JuMP.objective_value(sos_problem), - Q, - halfradius=halfradius, + Q; + halfradius = halfradius, ) return status, certified, λ_cert end -function check_positivity(elt, unit, wd; upper_bound=Inf, halfradius=2, optimizer) +function check_positivity( + elt, + unit, + wd; + upper_bound = Inf, + halfradius = 2, + optimizer, +) @assert aug(elt) == aug(unit) == 0 @time sos_problem, Ps = - PropertyT.sos_problem_primal(elt, unit, wd, upper_bound=upper_bound) + PropertyT.sos_problem_primal(elt, unit, wd; upper_bound = upper_bound) @time status, _ = PropertyT.solve(sos_problem, optimizer) @@ -29,13 +42,7 @@ function check_positivity(elt, unit, wd; upper_bound=Inf, halfradius=2, optimize λ = JuMP.value(sos_problem[:λ]) - certified, λ_cert = PropertyT.certify_solution( - elt, - unit, - λ, - Q, - halfradius=halfradius - ) + certified, λ_cert = + PropertyT.certify_solution(elt, unit, λ, Q; halfradius = halfradius) return status, certified, λ_cert end - diff --git a/test/constratint_matrices.jl b/test/constratint_matrices.jl index afdee61..1d04876 100644 --- a/test/constratint_matrices.jl +++ b/test/constratint_matrices.jl @@ -1,12 +1,17 @@ @testset "ConstraintMatrix" begin - @test PropertyT.ConstraintMatrix{Float64}([-1, 2, -1, 1, 4, 2, 6], 3, 2, π) isa AbstractMatrix + @test PropertyT.ConstraintMatrix{Float64}( + [-1, 2, -1, 1, 4, 2, 6], + 3, + 2, + π, + ) isa AbstractMatrix cm = PropertyT.ConstraintMatrix{Float64}([-1, 2, -1, 1, 4, 2, 6], 3, 2, π) @test cm == Float64[ -π π - 2π 0.0 - 0.0 π + 2π 0 + 0 π ] @test collect(PropertyT.nzpairs(cm)) == [ @@ -18,4 +23,7 @@ 1 => -3.141592653589793 1 => -3.141592653589793 ] + + @test PropertyT.ConstraintMatrix{Float64}([-9:-1; 1:9], 3, 3, 1.0) == + zeros(3, 3) end diff --git a/test/graded_adj.jl b/test/graded_adj.jl index bf5a804..447b58c 100644 --- a/test/graded_adj.jl +++ b/test/graded_adj.jl @@ -1,10 +1,9 @@ @testset "Adj via grading" begin - @testset "SL(n,Z) & Aut(F₄)" begin n = 4 halfradius = 1 SL = MatrixGroups.SpecialLinearGroup{n}(Int8) - RSL, S, sizes = PropertyT.group_algebra(SL, halfradius=halfradius, twisted=true) + RSL, S, sizes = PropertyT.group_algebra(SL; halfradius = halfradius) Δ = RSL(length(S)) - sum(RSL(s) for s in S) @@ -22,10 +21,9 @@ @test PropertyT.Adj(Δs, :A₂) == adj @test PropertyT.Adj(Δs, Symbol("A₁×A₁")) == op - halfradius = 1 G = SpecialAutomorphismGroup(FreeGroup(n)) - RG, S, sizes = PropertyT.group_algebra(G, halfradius=halfradius, twisted=true) + RG, S, sizes = PropertyT.group_algebra(G; halfradius = halfradius) Δ = RG(length(S)) - sum(RG(s) for s in S) @@ -44,7 +42,6 @@ @test PropertyT.Adj(Δs, Symbol("A₁×A₁")) == op end - @testset "Symplectic group" begin @testset "Sp2(ℤ)" begin genus = 2 @@ -52,7 +49,8 @@ SpN = MatrixGroups.SymplecticGroup{2genus}(Int8) - RSpN, S_sp, sizes_sp = PropertyT.group_algebra(SpN, halfradius=halfradius, twisted=true) + RSpN, S_sp, sizes_sp = + PropertyT.group_algebra(SpN; halfradius = halfradius) Δ, Δs = let RG = RSpN, S = S_sp, ψ = identity Δ = RG(length(S)) - sum(RG(s) for s in S) @@ -73,7 +71,8 @@ SpN = MatrixGroups.SymplecticGroup{2genus}(Int8) - RSpN, S_sp, sizes_sp = PropertyT.group_algebra(SpN, halfradius=halfradius, twisted=true) + RSpN, S_sp, sizes_sp = + PropertyT.group_algebra(SpN; halfradius = halfradius) Δ, Δs = let RG = RSpN, S = S_sp, ψ = identity Δ = RG(length(S)) - sum(RG(s) for s in S) @@ -86,9 +85,14 @@ end @testset "Adj numerics for genus=$genus" begin - all_subtypes = ( - :A₁, :C₁, Symbol("A₁×A₁"), Symbol("C₁×C₁"), Symbol("A₁×C₁"), :A₂, :C₂ + :A₁, + :C₁, + Symbol("A₁×A₁"), + Symbol("C₁×C₁"), + Symbol("A₁×C₁"), + :A₂, + :C₂, ) @test PropertyT.Adj(Δs, :A₂)[one(SpN)] == 384 @@ -101,8 +105,8 @@ @test isinteger(PropertyT.Adj(Δs, subtype)[one(SpN)] / 16) end end - @test sum(PropertyT.Adj(Δs, subtype) for subtype in all_subtypes) == Δ^2 + @test sum(PropertyT.Adj(Δs, subtype) for subtype in all_subtypes) == + Δ^2 end end end - diff --git a/test/optimizers.jl b/test/optimizers.jl index f415de7..01b45db 100644 --- a/test/optimizers.jl +++ b/test/optimizers.jl @@ -4,12 +4,12 @@ import JuMP import SCS function scs_optimizer(; - accel=10, - alpha=1.5, - eps=1e-9, - max_iters=100_000, - verbose=true, - linear_solver=SCS.DirectSolver + accel = 10, + alpha = 1.5, + eps = 1e-9, + max_iters = 100_000, + verbose = true, + linear_solver = SCS.DirectSolver, ) return JuMP.optimizer_with_attributes( SCS.Optimizer, @@ -28,27 +28,27 @@ end import COSMO function cosmo_optimizer(; - accel=15, - alpha=1.6, - eps=1e-9, - max_iters=100_000, - verbose=true, - verbose_timing=verbose, - decompose=false + accel = 15, + alpha = 1.6, + eps = 1e-9, + max_iters = 100_000, + verbose = true, + verbose_timing = verbose, + decompose = false, ) return JuMP.optimizer_with_attributes( COSMO.Optimizer, - "accelerator" => COSMO.with_options( - COSMO.AndersonAccelerator, - mem=max(accel, 2) - ), + "accelerator" => + COSMO.with_options(COSMO.AndersonAccelerator; mem = max(accel, 2)), "alpha" => alpha, "decompose" => decompose, "eps_abs" => eps, "eps_rel" => eps, + "eps_prim_inf" => eps, + "eps_dual_inf" => eps, "max_iter" => max_iters, "verbose" => verbose, "verbose_timing" => verbose_timing, - "check_termination" => 200, + "check_termination" => 250, ) end diff --git a/test/quick_tests.jl b/test/quick_tests.jl index 9a38b5c..9478286 100644 --- a/test/quick_tests.jl +++ b/test/quick_tests.jl @@ -1,11 +1,12 @@ @testset "Quick tests" begin - @testset "SL(2,F₇)" begin N = 2 p = 7 halfradius = 3 - G = MatrixGroups.SpecialLinearGroup{N}(SymbolicWedderburn.Characters.FiniteFields.GF{p}) - RG, S, sizes = PropertyT.group_algebra(G, halfradius=3, twisted=true) + G = MatrixGroups.SpecialLinearGroup{N}( + SymbolicWedderburn.Characters.FiniteFields.GF{p}, + ) + RG, S, sizes = PropertyT.group_algebra(G; halfradius = 3) Δ = let RG = RG, S = S RG(length(S)) - sum(RG(s) for s in S) @@ -18,15 +19,15 @@ @testset "standard formulation" begin status, certified, λ_cert = check_positivity( elt, - unit, - upper_bound=ub, - halfradius=2, - optimizer=cosmo_optimizer( - eps=1e-7, - max_iters=5_000, - accel=50, - alpha=1.95, - ) + unit; + upper_bound = ub, + halfradius = 2, + optimizer = cosmo_optimizer(; + eps = 1e-7, + max_iters = 5_000, + accel = 50, + alpha = 1.95, + ), ) @test status == JuMP.OPTIMAL @@ -34,14 +35,18 @@ @test λ_cert > 5857 // 10000 m = PropertyT.sos_problem_dual(elt, unit) - PropertyT.solve(m, cosmo_optimizer( - eps=1e-7, - max_iters=10_000, - accel=50, - alpha=1.95, - )) + PropertyT.solve( + m, + cosmo_optimizer(; + eps = 1e-7, + max_iters = 10_000, + accel = 50, + alpha = 1.95, + ), + ) - @test JuMP.termination_status(m) in (JuMP.ALMOST_OPTIMAL, JuMP.OPTIMAL) + @test JuMP.termination_status(m) in + (JuMP.ALMOST_OPTIMAL, JuMP.OPTIMAL) @test JuMP.objective_value(m) ≈ λ_cert atol = 1e-2 end @@ -55,20 +60,22 @@ Σ, act, basis(RG), - StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[halfradius]]), + StarAlgebras.Basis{UInt16}( + @view basis(RG)[1:sizes[halfradius]] + ), ) status, certified, λ_cert = check_positivity( elt, unit, - wd, - upper_bound=ub, - halfradius=2, - optimizer=cosmo_optimizer( - eps=1e-7, - max_iters=10_000, - accel=50, - alpha=1.9, + wd; + upper_bound = ub, + halfradius = 2, + optimizer = cosmo_optimizer(; + eps = 1e-7, + max_iters = 10_000, + accel = 50, + alpha = 1.9, ), ) diff --git a/test/roots.jl b/test/roots.jl new file mode 100644 index 0000000..7cb32d0 --- /dev/null +++ b/test/roots.jl @@ -0,0 +1,10 @@ +using PropertyT.Roots +@testset "Roots" begin + @test Roots.Root{3,Int}([1, 2, 3]) isa Roots.AbstractRoot{} + @test Roots.Root([1, 2, 3]) isa Roots.AbstractRoot{3,Int} + # io + r = Roots.Root{3,Int}([1, 2, 3]) + @test contains(sprint(show, MIME"text/plain"(), r), "of length √14\n") + r = Roots.Root{3,Int}([1, 2, 2]) + @test contains(sprint(show, MIME"text/plain"(), r), "of length 3\n") +end diff --git a/test/runtests.jl b/test/runtests.jl index 7003c1e..a306e55 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -24,6 +24,8 @@ if haskey(ENV, "FULL_TEST") || haskey(ENV, "CI") include("1712.07167.jl") include("1812.03456.jl") + include("roots.jl") include("graded_adj.jl") + include("Chevalley.jl") end end