mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-12-24 02:00:30 +01:00
use ^ for group action everywhere
This commit is contained in:
parent
984161c91a
commit
0d48ff698c
@ -80,7 +80,7 @@ function SqAdjOp(RG::GroupRing, N::Integer)
|
||||
Alt_N = [σ for σ in SymmetricGroup(N) if parity(σ) == 0]
|
||||
sq, adj, op = RG(), RG(), RG()
|
||||
|
||||
Δ₂s = Dict(σ=>σ(Δ₂) for σ in Alt_N)
|
||||
Δ₂s = Dict(σ=>Δ₂^σ for σ in Alt_N)
|
||||
|
||||
for σ in Alt_N
|
||||
GroupRings.addeq!(sq, *(Δ₂s[σ], Δ₂s[σ], false))
|
||||
|
@ -31,14 +31,14 @@
|
||||
y = 2RG(elt2) - RG(elt)
|
||||
|
||||
for G in [SymmetricGroup(N), WreathProduct(SymmetricGroup(2), SymmetricGroup(N))]
|
||||
@test all(g(one(M)) == one(M) for g in G)
|
||||
@test all(rdict[g(m)] <= sizes[1] for g in G for m in S)
|
||||
@test all(g(m)*g(n) == g(m*n) for g in G for m in S for n in S)
|
||||
@test all(one(M)^g == one(M) for g in G)
|
||||
@test all(rdict[m^g] <= sizes[1] for g in G for m in S)
|
||||
@test all(m^g*n^g == (m*n)^g for g in G for m in S for n in S)
|
||||
|
||||
@test all(g(Δ) == Δ for g in G)
|
||||
@test all(g(x) == RG(1) - RG(g(elt)) for g in G)
|
||||
@test all(Δ^g == Δ for g in G)
|
||||
@test all(x^g == RG(1) - RG(elt^g) for g in G)
|
||||
|
||||
@test all(2RG(g(elt2)) - RG(g(elt)) == g(y) for g in G)
|
||||
@test all(2RG(elt2^g) - RG(elt^g) == y^g for g in G)
|
||||
end
|
||||
end
|
||||
|
||||
@ -47,9 +47,9 @@
|
||||
Sij = ssgs(M, i,j)
|
||||
Δij= PropertyT.spLaplacian(RG, Sij)
|
||||
|
||||
@test all(p(Δij) == PropertyT.spLaplacian(RG, ssgs(M, p[i], p[j])) for p in SymmetricGroup(N))
|
||||
@test all(Δij^p == PropertyT.spLaplacian(RG, ssgs(M, p[i], p[j])) for p in SymmetricGroup(N))
|
||||
|
||||
@test all(g(Δij) == PropertyT.spLaplacian(RG, ssgs(M, g.p[i], g.p[j])) for g in WreathProduct(SymmetricGroup(2), SymmetricGroup(N)))
|
||||
@test all(Δij^g == PropertyT.spLaplacian(RG, ssgs(M, g.p[i], g.p[j])) for g in WreathProduct(SymmetricGroup(2), SymmetricGroup(N)))
|
||||
end
|
||||
end
|
||||
end
|
||||
@ -77,14 +77,14 @@ end
|
||||
y = 2RG(elt2) - RG(elt)
|
||||
|
||||
for G in [SymmetricGroup(N), WreathProduct(SymmetricGroup(2), SymmetricGroup(N))]
|
||||
@test all(g(one(M)) == one(M) for g in G)
|
||||
@test all(rdict[g(m)] <= sizes[1] for g in G for m in S)
|
||||
@test all(g(m)*g(n) == g(m*n) for g in G for m in S for n in S)
|
||||
@test all(one(M)^g == one(M) for g in G)
|
||||
@test all(rdict[m^g] <= sizes[1] for g in G for m in S)
|
||||
@test all(m^g*n^g == (m*n)^g for g in G for m in S for n in S)
|
||||
|
||||
@test all(g(Δ) == Δ for g in G)
|
||||
@test all(g(x) == RG(1) - RG(g(elt)) for g in G)
|
||||
@test all(Δ^g == Δ for g in G)
|
||||
@test all(x^g == RG(1) - RG(elt^g) for g in G)
|
||||
|
||||
@test all(2RG(g(elt2)) - RG(g(elt)) == g(y) for g in G)
|
||||
@test all(2RG(elt2^g) - RG(elt^g) == y^g for g in G)
|
||||
end
|
||||
end
|
||||
|
||||
@ -92,9 +92,9 @@ end
|
||||
Sij = ssgs(M, i,j)
|
||||
Δij= PropertyT.spLaplacian(RG, Sij)
|
||||
|
||||
@test all(p(Δij) == PropertyT.spLaplacian(RG, ssgs(M, p[i], p[j])) for p in SymmetricGroup(N))
|
||||
@test all(Δij^p == PropertyT.spLaplacian(RG, ssgs(M, p[i], p[j])) for p in SymmetricGroup(N))
|
||||
|
||||
@test all(g(Δij) == PropertyT.spLaplacian(RG, ssgs(M, g.p[i], g.p[j])) for g in WreathProduct(SymmetricGroup(2), SymmetricGroup(N)))
|
||||
@test all(Δij^g == PropertyT.spLaplacian(RG, ssgs(M, g.p[i], g.p[j])) for g in WreathProduct(SymmetricGroup(2), SymmetricGroup(N)))
|
||||
end
|
||||
end
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user