mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-14 06:10:28 +01:00
add action by alphabet permutation
This commit is contained in:
parent
147211ea7a
commit
0e5799862b
@ -23,6 +23,8 @@ include("roots.jl")
|
||||
import .Roots
|
||||
include("gradings.jl")
|
||||
|
||||
include("actions/actions.jl")
|
||||
|
||||
include("1712.07167.jl")
|
||||
include("1812.03456.jl")
|
||||
|
||||
|
29
src/actions/actions.jl
Normal file
29
src/actions/actions.jl
Normal file
@ -0,0 +1,29 @@
|
||||
import SymbolicWedderburn.action
|
||||
StarAlgebras.star(g::GroupElement) = inv(g)
|
||||
|
||||
include("alphabet_permutation.jl")
|
||||
|
||||
include("sln_conjugation.jl")
|
||||
include("autfn_conjugation.jl")
|
||||
|
||||
function SymbolicWedderburn.action(
|
||||
act::SymbolicWedderburn.ByPermutations,
|
||||
g::Groups.GroupElement,
|
||||
α::StarAlgebras.AlgebraElement
|
||||
)
|
||||
res = StarAlgebras.zero!(similar(α))
|
||||
B = basis(parent(α))
|
||||
for (idx, val) in StarAlgebras._nzpairs(StarAlgebras.coeffs(α))
|
||||
a = B[idx]
|
||||
a_g = SymbolicWedderburn.action(act, g, a)
|
||||
res[a_g] += val
|
||||
end
|
||||
return res
|
||||
end
|
||||
|
||||
function Base.:^(
|
||||
w::W,
|
||||
p::PermutationGroups.AbstractPerm,
|
||||
) where {W<:Groups.AbstractWord}
|
||||
return W([l^p for l in w])
|
||||
end
|
42
src/actions/alphabet_permutation.jl
Normal file
42
src/actions/alphabet_permutation.jl
Normal file
@ -0,0 +1,42 @@
|
||||
## action induced from permuting letters of an alphabet
|
||||
|
||||
struct AlphabetPermutation{GEl,I} <: SymbolicWedderburn.ByPermutations
|
||||
perms::Dict{GEl,Perm{I}}
|
||||
end
|
||||
|
||||
function AlphabetPermutation(
|
||||
A::Alphabet,
|
||||
Γ::PermutationGroups.AbstractPermutationGroup,
|
||||
op,
|
||||
)
|
||||
return AlphabetPermutation(
|
||||
Dict(γ => inv(Perm([A[op(l, γ)] for l in A])) for γ in Γ),
|
||||
)
|
||||
end
|
||||
|
||||
function AlphabetPermutation(A::Alphabet, W::Constructions.WreathProduct, op)
|
||||
return AlphabetPermutation(
|
||||
Dict(
|
||||
w => inv(Perm([A[op(op(l, w.p), w.n)] for l in A])) for
|
||||
w in W
|
||||
),
|
||||
)
|
||||
end
|
||||
|
||||
function SymbolicWedderburn.action(
|
||||
act::AlphabetPermutation,
|
||||
γ::GroupElement,
|
||||
w::Groups.AbstractWord,
|
||||
)
|
||||
return w^(act.perms[γ])
|
||||
end
|
||||
|
||||
function SymbolicWedderburn.action(
|
||||
act::AlphabetPermutation,
|
||||
γ::GroupElement,
|
||||
g::Groups.AbstractFPGroupElement,
|
||||
)
|
||||
G = parent(g)
|
||||
w = word(g)^(act.perms[γ])
|
||||
return G(w)
|
||||
end
|
26
src/actions/autfn_conjugation.jl
Normal file
26
src/actions/autfn_conjugation.jl
Normal file
@ -0,0 +1,26 @@
|
||||
## Particular definitions for actions on Aut(F_n)
|
||||
|
||||
function _conj(
|
||||
t::Groups.Transvection,
|
||||
σ::PermutationGroups.AbstractPerm,
|
||||
)
|
||||
return Groups.Transvection(t.id, t.i^inv(σ), t.j^inv(σ), t.inv)
|
||||
end
|
||||
|
||||
function _flip(t::Groups.Transvection, g::Groups.GroupElement)
|
||||
isone(g) && return t
|
||||
return Groups.Transvection(t.id === :ϱ ? :λ : :ϱ, t.i, t.j, t.inv)
|
||||
end
|
||||
|
||||
function _conj(
|
||||
t::Groups.Transvection,
|
||||
x::Groups.Constructions.DirectPowerElement,
|
||||
)
|
||||
@assert Groups.order(Int, parent(x).group) == 2
|
||||
i, j = t.i, t.j
|
||||
t = ifelse(isone(x.elts[i] * x.elts[j]), t, inv(t))
|
||||
return _flip(t, x.elts[i])
|
||||
end
|
||||
|
||||
action_by_conjugation(sautfn::Groups.AutomorphismGroup{<:Groups.FreeGroup}, Σ::Groups.Group) =
|
||||
AlphabetPermutation(alphabet(sautfn), Σ, _conj)
|
20
src/actions/sln_conjugation.jl
Normal file
20
src/actions/sln_conjugation.jl
Normal file
@ -0,0 +1,20 @@
|
||||
## Particular definitions for actions on SL(n,ℤ)
|
||||
|
||||
function _conj(
|
||||
t::MatrixGroups.ElementaryMatrix{N},
|
||||
σ::PermutationGroups.AbstractPerm,
|
||||
) where {N}
|
||||
return MatrixGroups.ElementaryMatrix{N}(t.i^inv(σ), t.j^inv(σ), t.val)
|
||||
end
|
||||
|
||||
function _conj(
|
||||
t::MatrixGroups.ElementaryMatrix{N},
|
||||
x::Groups.Constructions.DirectPowerElement,
|
||||
) where {N}
|
||||
@assert Groups.order(Int, parent(x).group) == 2
|
||||
just_one_flips = xor(isone(x.elts[t.i]), isone(x.elts[t.j]))
|
||||
return ifelse(just_one_flips, inv(t), t)
|
||||
end
|
||||
|
||||
action_by_conjugation(sln::Groups.MatrixGroups.SpecialLinearGroup, Σ::Groups.Group) =
|
||||
AlphabetPermutation(alphabet(sln), Σ, _conj)
|
27
src/actions/spn_conjugation.jl
Normal file
27
src/actions/spn_conjugation.jl
Normal file
@ -0,0 +1,27 @@
|
||||
## Particular definitions for actions on Sp(n,ℤ)
|
||||
|
||||
function _conj(
|
||||
t::MatrixGroups.ElementarySymplectic{N,T},
|
||||
σ::PermutationGroups.AbstractPerm,
|
||||
) where {N,T}
|
||||
@assert iseven(N)
|
||||
@assert degree(σ) == N ÷ 2 "Got degree = $(degree(σ)); N = $N"
|
||||
i = mod1(t.i, N ÷ 2)
|
||||
ib = i == t.i ? 0 : N ÷ 2
|
||||
j = mod1(t.j, N ÷ 2)
|
||||
jb = j == t.j ? 0 : N ÷ 2
|
||||
return MatrixGroups.ElementarySymplectic{N}(t.symbol, i^inv(σ) + ib, j^inv(σ) + jb, t.val)
|
||||
end
|
||||
|
||||
function _conj(
|
||||
t::MatrixGroups.ElementarySymplectic{N,T},
|
||||
x::Groups.Constructions.DirectPowerElement,
|
||||
) where {N,T}
|
||||
@assert Groups.order(Int, parent(x).group) == 2
|
||||
@assert iseven(N)
|
||||
just_one_flips = xor(isone(x.elts[mod1(t.i, N ÷ 2)]), isone(x.elts[mod1(t.j, N ÷ 2)]))
|
||||
return ifelse(just_one_flips, inv(t), t)
|
||||
end
|
||||
|
||||
action_by_conjugation(sln::Groups.MatrixGroups.SymplecticGroup, Σ::Groups.Group) =
|
||||
AlphabetPermutation(alphabet(sln), Σ, _conj)
|
Loading…
Reference in New Issue
Block a user