1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-14 06:10:28 +01:00

add action by alphabet permutation

This commit is contained in:
Marek Kaluba 2022-11-07 16:21:58 +01:00
parent 147211ea7a
commit 0e5799862b
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
6 changed files with 146 additions and 0 deletions

View File

@ -23,6 +23,8 @@ include("roots.jl")
import .Roots
include("gradings.jl")
include("actions/actions.jl")
include("1712.07167.jl")
include("1812.03456.jl")

29
src/actions/actions.jl Normal file
View File

@ -0,0 +1,29 @@
import SymbolicWedderburn.action
StarAlgebras.star(g::GroupElement) = inv(g)
include("alphabet_permutation.jl")
include("sln_conjugation.jl")
include("autfn_conjugation.jl")
function SymbolicWedderburn.action(
act::SymbolicWedderburn.ByPermutations,
g::Groups.GroupElement,
α::StarAlgebras.AlgebraElement
)
res = StarAlgebras.zero!(similar(α))
B = basis(parent(α))
for (idx, val) in StarAlgebras._nzpairs(StarAlgebras.coeffs(α))
a = B[idx]
a_g = SymbolicWedderburn.action(act, g, a)
res[a_g] += val
end
return res
end
function Base.:^(
w::W,
p::PermutationGroups.AbstractPerm,
) where {W<:Groups.AbstractWord}
return W([l^p for l in w])
end

View File

@ -0,0 +1,42 @@
## action induced from permuting letters of an alphabet
struct AlphabetPermutation{GEl,I} <: SymbolicWedderburn.ByPermutations
perms::Dict{GEl,Perm{I}}
end
function AlphabetPermutation(
A::Alphabet,
Γ::PermutationGroups.AbstractPermutationGroup,
op,
)
return AlphabetPermutation(
Dict(γ => inv(Perm([A[op(l, γ)] for l in A])) for γ in Γ),
)
end
function AlphabetPermutation(A::Alphabet, W::Constructions.WreathProduct, op)
return AlphabetPermutation(
Dict(
w => inv(Perm([A[op(op(l, w.p), w.n)] for l in A])) for
w in W
),
)
end
function SymbolicWedderburn.action(
act::AlphabetPermutation,
γ::GroupElement,
w::Groups.AbstractWord,
)
return w^(act.perms[γ])
end
function SymbolicWedderburn.action(
act::AlphabetPermutation,
γ::GroupElement,
g::Groups.AbstractFPGroupElement,
)
G = parent(g)
w = word(g)^(act.perms[γ])
return G(w)
end

View File

@ -0,0 +1,26 @@
## Particular definitions for actions on Aut(F_n)
function _conj(
t::Groups.Transvection,
σ::PermutationGroups.AbstractPerm,
)
return Groups.Transvection(t.id, t.i^inv(σ), t.j^inv(σ), t.inv)
end
function _flip(t::Groups.Transvection, g::Groups.GroupElement)
isone(g) && return t
return Groups.Transvection(t.id === :ϱ ? : :ϱ, t.i, t.j, t.inv)
end
function _conj(
t::Groups.Transvection,
x::Groups.Constructions.DirectPowerElement,
)
@assert Groups.order(Int, parent(x).group) == 2
i, j = t.i, t.j
t = ifelse(isone(x.elts[i] * x.elts[j]), t, inv(t))
return _flip(t, x.elts[i])
end
action_by_conjugation(sautfn::Groups.AutomorphismGroup{<:Groups.FreeGroup}, Σ::Groups.Group) =
AlphabetPermutation(alphabet(sautfn), Σ, _conj)

View File

@ -0,0 +1,20 @@
## Particular definitions for actions on SL(n,)
function _conj(
t::MatrixGroups.ElementaryMatrix{N},
σ::PermutationGroups.AbstractPerm,
) where {N}
return MatrixGroups.ElementaryMatrix{N}(t.i^inv(σ), t.j^inv(σ), t.val)
end
function _conj(
t::MatrixGroups.ElementaryMatrix{N},
x::Groups.Constructions.DirectPowerElement,
) where {N}
@assert Groups.order(Int, parent(x).group) == 2
just_one_flips = xor(isone(x.elts[t.i]), isone(x.elts[t.j]))
return ifelse(just_one_flips, inv(t), t)
end
action_by_conjugation(sln::Groups.MatrixGroups.SpecialLinearGroup, Σ::Groups.Group) =
AlphabetPermutation(alphabet(sln), Σ, _conj)

View File

@ -0,0 +1,27 @@
## Particular definitions for actions on Sp(n,)
function _conj(
t::MatrixGroups.ElementarySymplectic{N,T},
σ::PermutationGroups.AbstractPerm,
) where {N,T}
@assert iseven(N)
@assert degree(σ) == N ÷ 2 "Got degree = $(degree(σ)); N = $N"
i = mod1(t.i, N ÷ 2)
ib = i == t.i ? 0 : N ÷ 2
j = mod1(t.j, N ÷ 2)
jb = j == t.j ? 0 : N ÷ 2
return MatrixGroups.ElementarySymplectic{N}(t.symbol, i^inv(σ) + ib, j^inv(σ) + jb, t.val)
end
function _conj(
t::MatrixGroups.ElementarySymplectic{N,T},
x::Groups.Constructions.DirectPowerElement,
) where {N,T}
@assert Groups.order(Int, parent(x).group) == 2
@assert iseven(N)
just_one_flips = xor(isone(x.elts[mod1(t.i, N ÷ 2)]), isone(x.elts[mod1(t.j, N ÷ 2)]))
return ifelse(just_one_flips, inv(t), t)
end
action_by_conjugation(sln::Groups.MatrixGroups.SymplecticGroup, Σ::Groups.Group) =
AlphabetPermutation(alphabet(sln), Σ, _conj)