mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-19 07:20:28 +01:00
add graded-by-root-system Adj
This commit is contained in:
parent
4b8efd2a40
commit
147211ea7a
@ -19,6 +19,10 @@ include("certify.jl")
|
||||
|
||||
include("sqadjop.jl")
|
||||
|
||||
include("roots.jl")
|
||||
import .Roots
|
||||
include("gradings.jl")
|
||||
|
||||
include("1712.07167.jl")
|
||||
include("1812.03456.jl")
|
||||
|
||||
|
80
src/gradings.jl
Normal file
80
src/gradings.jl
Normal file
@ -0,0 +1,80 @@
|
||||
## something about roots
|
||||
|
||||
Roots.Root(e::MatrixGroups.ElementaryMatrix{N}) where {N} =
|
||||
Roots.𝕖(N, e.i) - Roots.𝕖(N, e.j)
|
||||
|
||||
function Roots.Root(s::MatrixGroups.ElementarySymplectic{N}) where {N}
|
||||
if s.symbol === :A
|
||||
return Roots.𝕖(N ÷ 2, s.i) - Roots.𝕖(N ÷ 2, s.j)
|
||||
else#if s.symbol === :B
|
||||
n = N ÷ 2
|
||||
i, j = ifelse(s.i <= n, s.i, s.i - n), ifelse(s.j <= n, s.j, s.j - n)
|
||||
return (-1)^(s.i > s.j) * (Roots.𝕖(n, i) + Roots.𝕖(n, j))
|
||||
end
|
||||
end
|
||||
|
||||
function Roots.positive(
|
||||
generating_set::AbstractVector{<:MatrixGroups.ElementarySymplectic},
|
||||
)
|
||||
r = Roots._positive_direction(Roots.Root(first(generating_set)))
|
||||
pos_gens = [
|
||||
s for s in generating_set if s.val > 0.0 && dot(Roots.Root(s), r) ≥ 0.0
|
||||
]
|
||||
return pos_gens
|
||||
end
|
||||
|
||||
grading(s::MatrixGroups.ElementarySymplectic) = Roots.Root(s)
|
||||
grading(e::MatrixGroups.ElementaryMatrix) = Roots.Root(e)
|
||||
grading(t::Groups.Transvection) = grading(Groups._abelianize(t))
|
||||
|
||||
function grading(g::FPGroupElement)
|
||||
if length(word(g)) == 1
|
||||
A = alphabet(parent(g))
|
||||
return grading(A[first(word(g))])
|
||||
else
|
||||
throw("Grading is implemented only for generators")
|
||||
end
|
||||
end
|
||||
|
||||
_groupby(f, iter::AbstractVector) = _groupby(f.(iter), iter)
|
||||
function _groupby(keys::AbstractVector{K}, vals::AbstractVector{V}) where {K,V}
|
||||
@assert length(keys) == length(vals)
|
||||
d = Dict(k => V[] for k in keys)
|
||||
for (k, v) in zip(keys, vals)
|
||||
push!(d[k], v)
|
||||
end
|
||||
return d
|
||||
end
|
||||
|
||||
function laplacians(RG::StarAlgebra, S, grading)
|
||||
d = _groupby(grading, S)
|
||||
Δs = Dict(α => RG(length(Sα)) - sum(RG(s) for s in Sα) for (α, Sα) in d)
|
||||
return Δs
|
||||
end
|
||||
|
||||
function Adj(rootsystem::AbstractDict, subtype::Symbol)
|
||||
roots = let W = mapreduce(collect, union, keys(rootsystem))
|
||||
W = union!(W, -1 .* W)
|
||||
end
|
||||
|
||||
return reduce(
|
||||
+,
|
||||
(
|
||||
Δα * Δβ for (α, Δα) in rootsystem for (β, Δβ) in rootsystem if
|
||||
PropertyT_new.Roots.classify_sub_root_system(
|
||||
roots,
|
||||
first(α),
|
||||
first(β),
|
||||
) == subtype
|
||||
),
|
||||
init=zero(first(values(rootsystem))),
|
||||
)
|
||||
end
|
||||
|
||||
function level(rootsystem, level::Integer)
|
||||
1 ≤ level ≤ 4 || throw("level is implemented only for i ∈{1,2,3,4}")
|
||||
level == 1 && return Adj(rootsystem, :C₁) # always positive
|
||||
level == 2 && return Adj(rootsystem, :A₁) + Adj(rootsystem, Symbol("C₁×C₁")) + Adj(rootsystem, :C₂) # C₂ is not positive
|
||||
level == 3 && return Adj(rootsystem, :A₂) + Adj(rootsystem, Symbol("A₁×C₁"))
|
||||
level == 4 && return Adj(rootsystem, Symbol("A₁×A₁")) # positive
|
||||
end
|
183
src/roots.jl
Normal file
183
src/roots.jl
Normal file
@ -0,0 +1,183 @@
|
||||
module Roots
|
||||
|
||||
using StaticArrays
|
||||
using LinearAlgebra
|
||||
|
||||
export Root, isproportional, isorthogonal, ~, ⟂
|
||||
|
||||
abstract type AbstractRoot{N,T} end
|
||||
|
||||
struct Root{N,T} <: AbstractRoot{N,T}
|
||||
coord::SVector{N,T}
|
||||
end
|
||||
|
||||
Root(a) = Root(SVector(a...))
|
||||
|
||||
function Base.:(==)(r::Root{N}, s::Root{M}) where {M,N}
|
||||
M == N || return false
|
||||
r.coord == s.coord || return false
|
||||
return true
|
||||
end
|
||||
|
||||
Base.hash(r::Root, h::UInt) = hash(r.coord, hash(Root, h))
|
||||
|
||||
Base.:+(r::Root{N,T}, s::Root{N,T}) where {N,T} = Root{N,T}(r.coord + s.coord)
|
||||
Base.:-(r::Root{N,T}, s::Root{N,T}) where {N,T} = Root{N,T}(r.coord - s.coord)
|
||||
Base.:-(r::Root{N}) where {N} = Root(-r.coord)
|
||||
|
||||
Base.:*(a::Number, r::Root) = Root(a * r.coord)
|
||||
Base.:*(r::Root, a::Number) = a * r
|
||||
|
||||
Base.length(r::AbstractRoot) = norm(r, 2)
|
||||
|
||||
LinearAlgebra.norm(r::Root, p::Real=2) = norm(r.coord, p)
|
||||
LinearAlgebra.dot(r::Root, s::Root) = dot(r.coord, s.coord)
|
||||
|
||||
cos_angle(a, b) = dot(a, b) / (norm(a) * norm(b))
|
||||
|
||||
function isproportional(α::AbstractRoot{N}, β::AbstractRoot{M}) where {N,M}
|
||||
N == M || return false
|
||||
val = abs(cos_angle(α, β))
|
||||
return isapprox(val, one(val), atol=eps(one(val)))
|
||||
end
|
||||
|
||||
function isorthogonal(α::AbstractRoot{N}, β::AbstractRoot{M}) where {N,M}
|
||||
N == M || return false
|
||||
val = cos_angle(α, β)
|
||||
return isapprox(val, zero(val), atol=eps(one(val)))
|
||||
end
|
||||
|
||||
function _positive_direction(α::Root{N}) where {N}
|
||||
last = -1 / √2^(N - 1)
|
||||
return Root{N,Float64}(
|
||||
SVector(ntuple(i -> ifelse(i == N, last, (√2)^-i), N)),
|
||||
)
|
||||
end
|
||||
|
||||
function positive(roots::AbstractVector{<:Root{N}}) where {N}
|
||||
# return those roots for which dot(α, Root([½, ¼, …])) > 0.0
|
||||
pd = _positive_direction(first(roots))
|
||||
return filter(α -> dot(α, pd) > 0.0, roots)
|
||||
end
|
||||
|
||||
Base.:~(α::AbstractRoot, β::AbstractRoot) = isproportional(α, β)
|
||||
⟂(α::AbstractRoot, β::AbstractRoot) = isorthogonal(α, β)
|
||||
|
||||
function Base.show(io::IO, r::Root{N}) where {N}
|
||||
print(io, "Root$(r.coord)")
|
||||
end
|
||||
|
||||
function Base.show(io::IO, ::MIME"text/plain", r::Root{N}) where {N}
|
||||
lngth² = sum(x -> x^2, r.coord)
|
||||
l = isinteger(sqrt(lngth²)) ? "$(sqrt(lngth²))" : "√$(lngth²)"
|
||||
print(io, "Root in ℝ^$N of length $l\n", r.coord)
|
||||
end
|
||||
|
||||
E(N, i::Integer) = Root(ntuple(k -> k == i ? 1 : 0, N))
|
||||
𝕖(N, i) = E(N, i)
|
||||
𝕆(N, ::Type{T}) where {T} = Root(ntuple(_ -> zero(T), N))
|
||||
|
||||
"""
|
||||
classify_root_system(α, β)
|
||||
Return the symbol of smallest system generated by roots `α` and `β`.
|
||||
|
||||
The classification is based only on roots length and
|
||||
proportionality/orthogonality.
|
||||
"""
|
||||
function classify_root_system(α::AbstractRoot, β::AbstractRoot)
|
||||
lα, lβ = length(α), length(β)
|
||||
if isproportional(α, β)
|
||||
if lα ≈ lβ ≈ √2
|
||||
return :A₁
|
||||
elseif lα ≈ lβ ≈ 2.0
|
||||
return :C₁
|
||||
else
|
||||
error("Unknown root system ⟨α, β⟩:\n α = $α\n β = $β")
|
||||
end
|
||||
elseif isorthogonal(α, β)
|
||||
if lα ≈ lβ ≈ √2
|
||||
return Symbol("A₁×A₁")
|
||||
elseif lα ≈ lβ ≈ 2.0
|
||||
return Symbol("C₁×C₁")
|
||||
elseif (lα ≈ 2.0 && lβ ≈ √2) || (lα ≈ √2 && lβ ≈ 2)
|
||||
return Symbol("A₁×C₁")
|
||||
else
|
||||
error("Unknown root system ⟨α, β⟩:\n α = $α\n β = $β")
|
||||
end
|
||||
else # ⟨α, β⟩ is 2-dimensional, but they're not orthogonal
|
||||
if lα ≈ lβ ≈ √2
|
||||
return :A₂
|
||||
elseif (lα ≈ 2.0 && lβ ≈ √2) || (lα ≈ √2 && lβ ≈ 2)
|
||||
return :C₂
|
||||
else
|
||||
error("Unknown root system ⟨α, β⟩:\n α = $α\n β = $β")
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
function proportional_root_from_system(Ω::AbstractVector{<:Root}, α::Root)
|
||||
k = findfirst(v -> isproportional(α, v), Ω)
|
||||
if isnothing(k)
|
||||
error("Line L_α not contained in root system Ω:\n α = $α\n Ω = $Ω")
|
||||
end
|
||||
return Ω[k]
|
||||
end
|
||||
|
||||
struct Plane{R<:Root}
|
||||
v1::R
|
||||
v2::R
|
||||
vectors::Vector{R}
|
||||
end
|
||||
|
||||
Plane(α::R, β::R) where {R<:Root} =
|
||||
Plane(α, β, [a * α + b * β for a in -3:3 for b in -3:3])
|
||||
|
||||
function Base.in(r::R, plane::Plane{R}) where {R}
|
||||
return any(isproportional(r, v) for v in plane.vectors)
|
||||
end
|
||||
|
||||
function classify_sub_root_system(
|
||||
Ω::AbstractVector{<:Root{N}},
|
||||
α::Root{N},
|
||||
β::Root{N},
|
||||
) where {N}
|
||||
|
||||
v = proportional_root_from_system(Ω, α)
|
||||
w = proportional_root_from_system(Ω, β)
|
||||
|
||||
subsystem = filter(ω -> ω in Plane(v, w), Ω)
|
||||
@assert length(subsystem) > 0
|
||||
subsystem = positive(union(subsystem, -1 .* subsystem))
|
||||
|
||||
l = length(subsystem)
|
||||
if l == 1
|
||||
x = first(subsystem)
|
||||
return classify_root_system(x, x)
|
||||
elseif l == 2
|
||||
return classify_root_system(subsystem...)
|
||||
elseif l == 3
|
||||
a = classify_root_system(subsystem[1], subsystem[2])
|
||||
b = classify_root_system(subsystem[2], subsystem[3])
|
||||
c = classify_root_system(subsystem[1], subsystem[3])
|
||||
|
||||
if a == b == c # it's only A₂
|
||||
return a
|
||||
end
|
||||
|
||||
C = (:C₂, Symbol("C₁×C₁"))
|
||||
if (a ∈ C && b ∈ C && c ∈ C) && (:C₂ ∈ (a, b, c))
|
||||
return :C₂
|
||||
end
|
||||
elseif l == 4
|
||||
for i = 1:l
|
||||
for j = (i+1):l
|
||||
T = classify_root_system(subsystem[i], subsystem[j])
|
||||
T == :C₂ && return :C₂
|
||||
end
|
||||
end
|
||||
end
|
||||
@error "Unknown root subsystem generated by" α β
|
||||
throw("Unknown root system: $subsystem")
|
||||
end
|
||||
|
||||
end # of module Roots
|
Loading…
Reference in New Issue
Block a user