1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-23 00:10:28 +01:00

replace fixed rankOne_projections with automatically generated ones

This commit is contained in:
kalmar 2017-08-01 10:29:38 +02:00
parent c86f46666a
commit 1f508ea85c

View File

@ -61,49 +61,75 @@ function central_projection(RG::GroupRing, chi::AbstractCharacter,
return result
end
function rankOne_projections(G::PermutationGroup, T::Type=Rational{Int})
RG = GroupRing(G)
cprojs = [central_projection(RG, χ, T) for χ in (PermCharacter(λ) for λ in Partitions(G.n))]
function idempotents(RG::GroupRing{PermGroup}, T::Type=Rational{Int})
if RG.group.n == 1
return GroupRingElem{T}[one(RG,T)]
elseif RG.group.n == 2
Id = one(RG,T)
transp = convert(T, RG(RG.group([2,1])))
return GroupRingElem{T}[1//2*(Id + transp), 1//2*(Id - transp)]
if G.n == 1 || G.n == 2
return cprojs
elseif G.n == 3
p = 1//2*(one(RG, T) - RG(G([2,1,3]), T))
rankone_projs = [
cprojs[1], # alternating
p*cprojs[2], # regular
cprojs[3] # trivial
]
elseif G.n == 4
p⁺ = 1//2*(one(RG, T) + RG(G([2,1,3,4]), T))
p⁻ = 1//2*(one(RG, T) - RG(G([2,1,3,4]), T))
rankone_projs = [
cprojs[1], # alternating
p⁺*cprojs[2], # alt_regular
p⁻*cprojs[3], # regular
p⁻*cprojs[4], # via projection to S₃
cprojs[5] # trivial
]
elseif G.n == 5
p⁺ = 1//2*(one(RG, T) + RG(G([2,1,3,4,5]), T))
p⁻ = 1//2*(one(RG, T) - RG(G([2,1,3,4,5]), T))
end
projs = Vector{Vector{perm}}()
for l in 2:RG.group.n
u = RG.group([circshift([i for i in 1:l], -1); [i for i in l+1:RG.group.n]])
i = 0
while (l-1)*i <= RG.group.n
v = RG.group(circshift(collect(1:RG.group.n), i))
k = inv(v)*u*v
push!(projs, generateGroup([k], RG.group.n))
i += 1
end
end
q⁺ = 1//2*(one(RG, T) + RG(G([1,2,4,3,5]), T))
q⁻ = 1//2*(one(RG, T) - RG(G([1,2,4,3,5]), T))
idems = Vector{GroupRingElem{T}}()
for p in projs
append!(idems, [RG(p, T), RG(p, T, alt=true)])
end
rankone_projs = [
cprojs[1], # alternating
p⁺*cprojs[2], # alt_regular
p⁺*q⁺*cprojs[3], # ψ
p⁺*q⁺*cprojs[4], # alt_ϱ
p⁻*cprojs[5], # regular
p⁻*q⁻*cprojs[6], # ϱ
cprojs[7] # trivial
]
else
throw("Rank-one projections for $G unknown!")
return unique(idems)
end
function rankOne_projection{S}(chi::PropertyT.PermCharacter, idems::Vector{GroupRingElem{S}})
RG = parent(first(idems))
ids = [[one(RG, S)]; idems]
for (i,j,k) in Base.product(ids, ids, ids)
if chi(i) == zero(S) || chi(j) == zero(S) || chi(k) == zero(S)
continue
end
elt = i*j*k
elt^2 == elt || continue
if chi(elt) == one(S)
return elt
# return (i,j,k)
end
end
return rankone_projs
throw("Couldn't find rank-one projection for $chi")
end
function minimalprojections(G::PermutationGroup, T::Type=Rational{Int})
if G.n == 1
return [(one(GroupRing(G), T), one(GroupRing(G), T))]
elseif G.n < 8
RG = GroupRing(G, fastm=true)
else
RG = GroupRing(G, fastm=false)
end
RGidems = idempotents(RG, T)
chars = [PropertyT.PermCharacter(p) for p in Partitions(G.n)]
return [
(rankOne_projection(chi, RGidems), PropertyT.central_projection(RG, chi))
for chi in chars]
end
function rankOne_projections(G::PermutationGroup, T::Type=Rational{Int})
mps = minimalprojections(G, T)
return [idem*cproj for (idem, cproj) in mps]
end
function rankOne_projections(BN::WreathProduct, T::Type=Rational{Int})
@ -137,3 +163,53 @@ function rankOne_projections(BN::WreathProduct, T::Type=Rational{Int})
return all_projs
end
##############################################################################
#
# General Groups Misc
#
##############################################################################
doc"""
products(X::Vector{GroupElem}, Y::Vector{GroupElem}, op=*)
> Returns a vector of all possible products (or `op(x,y)`), where $x\in X$ and
> $y\in Y$ are group elements. You may specify which operation is used when
> forming 'products' by adding `op` (which is `*` by default).
"""
function products{T<:GroupElem}(X::AbstractVector{T}, Y::AbstractVector{T}, op=*)
result = Vector{T}()
seen = Set{T}()
for x in X
for y in Y
z = op(x,y)
if !in(z, seen)
push!(seen, z)
push!(result, z)
end
end
end
return result
end
doc"""
generateGroup(gens::Vector{GroupElem}, r=2, Id=parent(first(gens))(), op=*)
> Produces all elements of a group generated by elements in `gens` in ball of
> radius `r` (word-length metric induced by `gens`).
> If `r(=2)` is specified the procedure will terminate after generating ball
> of radius `r` in the word-length metric induced by `gens`.
> The identity element `Id` and binary operation function `op` can be supplied
> to e.g. take advantage of additive group structure.
"""
function generateGroup{T<:GroupElem}(gens::Vector{T}, r=2, Id::T=parent(first(gens))(), op=*)
n = 0
R = 1
elts = gens
gens = [Id; gens]
while n length(elts) && R < r
# @show elts
R += 1
n = length(elts)
elts = products(elts, gens, op)
end
return elts
end