mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-23 00:10:28 +01:00
replace fixed rankOne_projections with automatically generated ones
This commit is contained in:
parent
c86f46666a
commit
1f508ea85c
@ -61,49 +61,75 @@ function central_projection(RG::GroupRing, chi::AbstractCharacter,
|
||||
return result
|
||||
end
|
||||
|
||||
function rankOne_projections(G::PermutationGroup, T::Type=Rational{Int})
|
||||
RG = GroupRing(G)
|
||||
cprojs = [central_projection(RG, χ, T) for χ in (PermCharacter(λ) for λ in Partitions(G.n))]
|
||||
function idempotents(RG::GroupRing{PermGroup}, T::Type=Rational{Int})
|
||||
if RG.group.n == 1
|
||||
return GroupRingElem{T}[one(RG,T)]
|
||||
elseif RG.group.n == 2
|
||||
Id = one(RG,T)
|
||||
transp = convert(T, RG(RG.group([2,1])))
|
||||
return GroupRingElem{T}[1//2*(Id + transp), 1//2*(Id - transp)]
|
||||
|
||||
if G.n == 1 || G.n == 2
|
||||
return cprojs
|
||||
elseif G.n == 3
|
||||
p = 1//2*(one(RG, T) - RG(G([2,1,3]), T))
|
||||
rankone_projs = [
|
||||
cprojs[1], # alternating
|
||||
p*cprojs[2], # regular
|
||||
cprojs[3] # trivial
|
||||
]
|
||||
elseif G.n == 4
|
||||
p⁺ = 1//2*(one(RG, T) + RG(G([2,1,3,4]), T))
|
||||
p⁻ = 1//2*(one(RG, T) - RG(G([2,1,3,4]), T))
|
||||
rankone_projs = [
|
||||
cprojs[1], # alternating
|
||||
p⁺*cprojs[2], # alt_regular
|
||||
p⁻*cprojs[3], # regular
|
||||
p⁻*cprojs[4], # via projection to S₃
|
||||
cprojs[5] # trivial
|
||||
]
|
||||
elseif G.n == 5
|
||||
p⁺ = 1//2*(one(RG, T) + RG(G([2,1,3,4,5]), T))
|
||||
p⁻ = 1//2*(one(RG, T) - RG(G([2,1,3,4,5]), T))
|
||||
end
|
||||
projs = Vector{Vector{perm}}()
|
||||
for l in 2:RG.group.n
|
||||
u = RG.group([circshift([i for i in 1:l], -1); [i for i in l+1:RG.group.n]])
|
||||
i = 0
|
||||
while (l-1)*i <= RG.group.n
|
||||
v = RG.group(circshift(collect(1:RG.group.n), i))
|
||||
k = inv(v)*u*v
|
||||
push!(projs, generateGroup([k], RG.group.n))
|
||||
i += 1
|
||||
end
|
||||
end
|
||||
|
||||
q⁺ = 1//2*(one(RG, T) + RG(G([1,2,4,3,5]), T))
|
||||
q⁻ = 1//2*(one(RG, T) - RG(G([1,2,4,3,5]), T))
|
||||
idems = Vector{GroupRingElem{T}}()
|
||||
for p in projs
|
||||
append!(idems, [RG(p, T), RG(p, T, alt=true)])
|
||||
end
|
||||
|
||||
rankone_projs = [
|
||||
cprojs[1], # alternating
|
||||
p⁺*cprojs[2], # alt_regular
|
||||
p⁺*q⁺*cprojs[3], # ψ
|
||||
p⁺*q⁺*cprojs[4], # alt_ϱ
|
||||
p⁻*cprojs[5], # regular
|
||||
p⁻*q⁻*cprojs[6], # ϱ
|
||||
cprojs[7] # trivial
|
||||
]
|
||||
else
|
||||
throw("Rank-one projections for $G unknown!")
|
||||
return unique(idems)
|
||||
end
|
||||
|
||||
function rankOne_projection{S}(chi::PropertyT.PermCharacter, idems::Vector{GroupRingElem{S}})
|
||||
|
||||
RG = parent(first(idems))
|
||||
|
||||
ids = [[one(RG, S)]; idems]
|
||||
|
||||
for (i,j,k) in Base.product(ids, ids, ids)
|
||||
if chi(i) == zero(S) || chi(j) == zero(S) || chi(k) == zero(S)
|
||||
continue
|
||||
end
|
||||
elt = i*j*k
|
||||
elt^2 == elt || continue
|
||||
if chi(elt) == one(S)
|
||||
return elt
|
||||
# return (i,j,k)
|
||||
end
|
||||
end
|
||||
return rankone_projs
|
||||
throw("Couldn't find rank-one projection for $chi")
|
||||
end
|
||||
|
||||
function minimalprojections(G::PermutationGroup, T::Type=Rational{Int})
|
||||
if G.n == 1
|
||||
return [(one(GroupRing(G), T), one(GroupRing(G), T))]
|
||||
elseif G.n < 8
|
||||
RG = GroupRing(G, fastm=true)
|
||||
else
|
||||
RG = GroupRing(G, fastm=false)
|
||||
end
|
||||
|
||||
RGidems = idempotents(RG, T)
|
||||
chars = [PropertyT.PermCharacter(p) for p in Partitions(G.n)]
|
||||
|
||||
return [
|
||||
(rankOne_projection(chi, RGidems), PropertyT.central_projection(RG, chi))
|
||||
for chi in chars]
|
||||
end
|
||||
|
||||
function rankOne_projections(G::PermutationGroup, T::Type=Rational{Int})
|
||||
mps = minimalprojections(G, T)
|
||||
return [idem*cproj for (idem, cproj) in mps]
|
||||
end
|
||||
|
||||
function rankOne_projections(BN::WreathProduct, T::Type=Rational{Int})
|
||||
@ -137,3 +163,53 @@ function rankOne_projections(BN::WreathProduct, T::Type=Rational{Int})
|
||||
|
||||
return all_projs
|
||||
end
|
||||
|
||||
##############################################################################
|
||||
#
|
||||
# General Groups Misc
|
||||
#
|
||||
##############################################################################
|
||||
|
||||
doc"""
|
||||
products(X::Vector{GroupElem}, Y::Vector{GroupElem}, op=*)
|
||||
> Returns a vector of all possible products (or `op(x,y)`), where $x\in X$ and
|
||||
> $y\in Y$ are group elements. You may specify which operation is used when
|
||||
> forming 'products' by adding `op` (which is `*` by default).
|
||||
"""
|
||||
function products{T<:GroupElem}(X::AbstractVector{T}, Y::AbstractVector{T}, op=*)
|
||||
result = Vector{T}()
|
||||
seen = Set{T}()
|
||||
for x in X
|
||||
for y in Y
|
||||
z = op(x,y)
|
||||
if !in(z, seen)
|
||||
push!(seen, z)
|
||||
push!(result, z)
|
||||
end
|
||||
end
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
||||
doc"""
|
||||
generateGroup(gens::Vector{GroupElem}, r=2, Id=parent(first(gens))(), op=*)
|
||||
> Produces all elements of a group generated by elements in `gens` in ball of
|
||||
> radius `r` (word-length metric induced by `gens`).
|
||||
> If `r(=2)` is specified the procedure will terminate after generating ball
|
||||
> of radius `r` in the word-length metric induced by `gens`.
|
||||
> The identity element `Id` and binary operation function `op` can be supplied
|
||||
> to e.g. take advantage of additive group structure.
|
||||
"""
|
||||
function generateGroup{T<:GroupElem}(gens::Vector{T}, r=2, Id::T=parent(first(gens))(), op=*)
|
||||
n = 0
|
||||
R = 1
|
||||
elts = gens
|
||||
gens = [Id; gens]
|
||||
while n ≠ length(elts) && R < r
|
||||
# @show elts
|
||||
R += 1
|
||||
n = length(elts)
|
||||
elts = products(elts, gens, op)
|
||||
end
|
||||
return elts
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user