mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2025-01-13 22:52:34 +01:00
update constraints to StarAlgebras-0.2
This commit is contained in:
parent
4e43811ea3
commit
1fb324b49a
@ -19,9 +19,9 @@ Groups = "0.7"
|
||||
IntervalArithmetic = "0.20"
|
||||
JuMP = "1.3"
|
||||
ProgressMeter = "1.7"
|
||||
SCS = "1.1.0"
|
||||
SCS = "1.1"
|
||||
StaticArrays = "1"
|
||||
SymbolicWedderburn = "0.3.2"
|
||||
SymbolicWedderburn = "0.3.4"
|
||||
julia = "1.6"
|
||||
|
||||
[extras]
|
||||
|
@ -26,13 +26,13 @@ include("gradings.jl")
|
||||
|
||||
include("actions/actions.jl")
|
||||
|
||||
function group_algebra(G::Groups.Group, S=gens(G); halfradius::Integer, twisted::Bool)
|
||||
function group_algebra(G::Groups.Group, S = gens(G); halfradius::Integer)
|
||||
S = union!(S, inv.(S))
|
||||
@info "generating wl-metric ball of radius $(2halfradius)"
|
||||
@time E, sizes = Groups.wlmetric_ball(S, radius=2halfradius)
|
||||
@info "sizes = $(sizes)"
|
||||
@info "computing the *-algebra structure for G"
|
||||
@time RG = StarAlgebras.StarAlgebra{twisted}(
|
||||
@time RG = StarAlgebras.StarAlgebra(
|
||||
G,
|
||||
StarAlgebras.Basis{UInt32}(E),
|
||||
(sizes[halfradius], sizes[halfradius]),
|
||||
|
@ -8,26 +8,25 @@ end
|
||||
function __sos_via_sqr!(
|
||||
res::StarAlgebras.AlgebraElement,
|
||||
P::AbstractMatrix;
|
||||
augmented::Bool
|
||||
augmented::Bool,
|
||||
id = (b = basis(parent(res)); b[one(first(b))]),
|
||||
)
|
||||
StarAlgebras.zero!(res)
|
||||
A = parent(res)
|
||||
b = basis(A)
|
||||
@assert size(A.mstructure) == size(P)
|
||||
e = b[one(b[1])]
|
||||
mstr = A.mstructure
|
||||
@assert size(mstr) == size(P)
|
||||
|
||||
for i in axes(A.mstructure, 1)
|
||||
x = StarAlgebras._istwisted(A.mstructure) ? StarAlgebras.star(b[i]) : b[i]
|
||||
for j in axes(A.mstructure, 2)
|
||||
StarAlgebras.zero!(res)
|
||||
for j in axes(mstr, 2)
|
||||
for i in axes(mstr, 1)
|
||||
p = P[i, j]
|
||||
xy = b[A.mstructure[i, j]]
|
||||
# either result += P[x,y]*(x*y)
|
||||
res[xy] += p
|
||||
x_star_y = mstr[-i, j]
|
||||
res[x_star_y] += p
|
||||
# either result += P[x,y]*(x'*y)
|
||||
if augmented
|
||||
# or result += P[x,y]*(1-x)*(1-y) == P[x,y]*(2-x-y+xy)
|
||||
y = b[j]
|
||||
res[e] += p
|
||||
res[x] -= p
|
||||
# or result += P[x,y]*(1-x)'*(1-y) == P[x,y]*(1-x'-y+x'y)
|
||||
res[id] += p
|
||||
x_star, y = mstr[-i, id], j
|
||||
res[x_star] -= p
|
||||
res[y] -= p
|
||||
end
|
||||
end
|
||||
|
@ -132,3 +132,50 @@ function LinearAlgebra.dot(cm::ConstraintMatrix, m::AbstractMatrix{T}) where {T}
|
||||
neg = isempty(cm.neg) ? zero(first(m)) : sum(@view m[cm.neg])
|
||||
return convert(eltype(cm), cm.val) * (pos - neg)
|
||||
end
|
||||
|
||||
function constraints(A::StarAlgebras.StarAlgebra; augmented::Bool)
|
||||
return constraints(basis(A), A.mstructure; augmented = augmented)
|
||||
end
|
||||
|
||||
function constraints(
|
||||
basis::StarAlgebras.AbstractBasis,
|
||||
mstr::StarAlgebras.MultiplicativeStructure;
|
||||
augmented = false,
|
||||
)
|
||||
cnstrs = _constraints(
|
||||
mstr;
|
||||
augmented = augmented,
|
||||
num_constraints = length(basis),
|
||||
id = basis[one(first(basis))],
|
||||
)
|
||||
|
||||
return Dict(
|
||||
basis[i] => ConstraintMatrix(c, size(mstr)..., 1) for
|
||||
(i, c) in pairs(cnstrs)
|
||||
)
|
||||
end
|
||||
|
||||
function _constraints(
|
||||
mstr::StarAlgebras.MultiplicativeStructure;
|
||||
augmented::Bool = false,
|
||||
num_constraints = maximum(mstr),
|
||||
id,
|
||||
)
|
||||
cnstrs = [signed(eltype(mstr))[] for _ in 1:num_constraints]
|
||||
LI = LinearIndices(size(mstr))
|
||||
|
||||
for ci in CartesianIndices(size(mstr))
|
||||
k = LI[ci]
|
||||
i, j = Tuple(ci)
|
||||
a_star_b = mstr[-i, j]
|
||||
push!(cnstrs[a_star_b], k)
|
||||
if augmented
|
||||
# (1-a)'(1-b) = 1 - a' - b + a'b
|
||||
push!(cnstrs[id], k)
|
||||
a_star, b = mstr[-i, id], j
|
||||
push!(cnstrs[a_star], -k)
|
||||
push!(cnstrs[b], -k)
|
||||
end
|
||||
end
|
||||
return cnstrs
|
||||
end
|
||||
|
@ -11,10 +11,8 @@ function sos_problem_dual(
|
||||
)
|
||||
@assert parent(elt) == parent(order_unit)
|
||||
algebra = parent(elt)
|
||||
mstructure = if StarAlgebras._istwisted(algebra.mstructure)
|
||||
algebra.mstructure
|
||||
else
|
||||
StarAlgebras.MTable{true}(basis(algebra), table_size=size(algebra.mstructure))
|
||||
moment_matrix = let m = algebra.mstructure
|
||||
[m[-i, j] for i in axes(m, 1) for j in axes(m, 2)]
|
||||
end
|
||||
|
||||
# 1 variable for every primal constraint
|
||||
@ -24,7 +22,7 @@ function sos_problem_dual(
|
||||
model = Model()
|
||||
@variable model y[1:length(basis(algebra))]
|
||||
@constraint model λ_dual dot(order_unit, y) == 1
|
||||
@constraint(model, psd, y[mstructure] in PSDCone())
|
||||
@constraint(model, psd, y[moment_matrix] in PSDCone())
|
||||
|
||||
if !isinf(lower_bound)
|
||||
throw("Not Implemented yet")
|
||||
@ -37,45 +35,6 @@ function sos_problem_dual(
|
||||
return model
|
||||
end
|
||||
|
||||
function constraints(
|
||||
basis::StarAlgebras.AbstractBasis,
|
||||
mstr::AbstractMatrix{<:Integer};
|
||||
augmented::Bool=false,
|
||||
table_size=size(mstr)
|
||||
)
|
||||
cnstrs = [signed(eltype(mstr))[] for _ in basis]
|
||||
LI = LinearIndices(table_size)
|
||||
|
||||
for ci in CartesianIndices(table_size)
|
||||
k = LI[ci]
|
||||
a_star_b = basis[mstr[k]]
|
||||
push!(cnstrs[basis[a_star_b]], k)
|
||||
if augmented
|
||||
# (1-a_star)(1-b) = 1 - a_star - b + a_star_b
|
||||
|
||||
i, j = Tuple(ci)
|
||||
a, b = basis[i], basis[j]
|
||||
|
||||
push!(cnstrs[basis[one(a)]], k)
|
||||
push!(cnstrs[basis[StarAlgebras.star(a)]], -k)
|
||||
push!(cnstrs[basis[b]], -k)
|
||||
end
|
||||
end
|
||||
|
||||
return Dict(
|
||||
basis[i] => ConstraintMatrix(c, table_size..., 1) for (i, c) in pairs(cnstrs)
|
||||
)
|
||||
end
|
||||
|
||||
function constraints(A::StarAlgebras.StarAlgebra; augmented::Bool, twisted::Bool)
|
||||
mstructure = if StarAlgebras._istwisted(A.mstructure) == twisted
|
||||
A.mstructure
|
||||
else
|
||||
StarAlgebras.MTable{twisted}(basis(A), table_size=size(A.mstructure))
|
||||
end
|
||||
return constraints(basis(A), mstructure, augmented=augmented)
|
||||
end
|
||||
|
||||
"""
|
||||
sos_problem_primal(X, [u = zero(X); upper_bound=Inf])
|
||||
Formulate sum of squares decomposition problem for `X - λ·u`.
|
||||
@ -111,7 +70,7 @@ function sos_problem_primal(
|
||||
@warn "Setting `upper_bound` together with zero `order_unit` has no effect"
|
||||
end
|
||||
|
||||
A = constraints(parent(elt), augmented=augmented, twisted=true)
|
||||
A = constraints(parent(elt); augmented = augmented)
|
||||
|
||||
if !iszero(order_unit)
|
||||
λ = JuMP.@variable(model, λ)
|
||||
@ -135,9 +94,9 @@ end
|
||||
function invariant_constraint!(
|
||||
result::AbstractMatrix,
|
||||
basis::StarAlgebras.AbstractBasis,
|
||||
cnstrs::AbstractDict{K,CM},
|
||||
cnstrs::AbstractDict{K,<:ConstraintMatrix},
|
||||
invariant_vec::SparseVector,
|
||||
) where {K,CM<:ConstraintMatrix}
|
||||
) where {K}
|
||||
result .= zero(eltype(result))
|
||||
for i in SparseArrays.nonzeroinds(invariant_vec)
|
||||
g = basis[i]
|
||||
@ -234,7 +193,7 @@ function sos_problem_primal(
|
||||
U = convert(Vector{T}, StarAlgebras.coeffs(orderunit))
|
||||
|
||||
# defining constraints based on the multiplicative structure
|
||||
cnstrs = constraints(parent(elt), augmented=augmented, twisted=true)
|
||||
cnstrs = constraints(parent(elt); augmented = augmented)
|
||||
|
||||
prog = ProgressMeter.Progress(
|
||||
length(invariant_vectors(wedderburn)),
|
||||
|
Loading…
Reference in New Issue
Block a user