From 2508dba1e4d5c56e9d87c9369aaf150b63cbc8d6 Mon Sep 17 00:00:00 2001 From: kalmar Date: Fri, 13 Jan 2017 18:42:43 +0100 Subject: [PATCH] Initial AutF4 work (naive basis, etc) --- AutF4.jl | 109 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 109 insertions(+) create mode 100644 AutF4.jl diff --git a/AutF4.jl b/AutF4.jl new file mode 100644 index 0000000..a3754a0 --- /dev/null +++ b/AutF4.jl @@ -0,0 +1,109 @@ +using Combinatorics + +using JuMP +import SCS: SCSSolver +import Mosek: MosekSolver + +push!(LOAD_PATH, "./") +using SemiDirectProduct +using GroupAlgebras +include("property(T).jl") + +const N = 4 + +const VERBOSE = true + + +function permutation_matrix(p::Vector{Int}) + n = length(p) + sort(p) == collect(1:n) || throw(ArgumentError("Input array must be a permutation of 1:n")) + A = eye(n) + return A[p,:] +end + +SymmetricGroup(n::Int) = [nthperm(collect(1:n), k) for k in 1:factorial(n)] + +# const SymmetricGroup = [permutation_matrix(x) for x in SymmetricGroup_perms] + +function E(i::Int, j::Int; dim::Int=N) + @assert i≠j + k = eye(dim) + k[i,j] = 1 + return k +end + +function eltary_basis_vector(i::Int; dim::Int=N) + result = zeros(dim) + if 0 < i ≤ dim + result[i] = 1 + end + return result +end + +v(i::Int; dim=N) = eltary_basis_vector(i,dim=dim) + +ϱ(i::Int,j::Int,n=N) = SemiDirectProductElement(E(i,j,dim=n), v(j,dim=n)) +λ(i::Int,j::Int,n=N) = SemiDirectProductElement(E(i,j,dim=n), -v(j,dim=n)) + +function ɛ(i::Int, n::Int=N) + result = eye(n) + result[i,i] = -1 + return SemiDirectProductElement(result) +end + +σ(permutation::Vector{Int}) = + SemiDirectProductElement(permutation_matrix(permutation)) + +function AutF_generating_set(n::Int=N) + indexing = [[i,j] for i in 1:n for j in 1:n if i≠j] + ϱs = [ϱ(ij...) for ij in indexing] + λs = [λ(ij...) for ij in indexing] + ɛs = [ɛ(i) for i in 1:N] + σs = [σ(perm) for perm in SymmetricGroup(n)] + S = vcat(ϱs, λs, ɛs, σs); + S = unique(vcat(S, [inv(x) for x in S])); + return S +end + +const ID = eye(N+1) + +const S₁ = AutF_generating_set(N) + +matrix_S₁ = [matrix_repr(x) for x in S₁] + +const TOL=10.0^-7 + +matrix_S₁[1:10,:][:,1] + +Δ, cm = prepare_Laplacian_and_constraints(matrix_S₁) + +#solver = SCSSolver(eps=TOL, max_iters=ITERATIONS, verbose=true); +solver = MosekSolver(MSK_DPAR_INTPNT_CO_TOL_REL_GAP=TOL, +# MSK_DPAR_INTPNT_CO_TOL_PFEAS=1e-15, +# MSK_DPAR_INTPNT_CO_TOL_DFEAS=1e-15, +# MSK_IPAR_PRESOLVE_USE=0, + QUIET=!VERBOSE) + +# κ, A = solve_for_property_T(S₁, solver, verbose=VERBOSE) + +product_matrix = readdlm("SL₃Z.product_matrix", Int) +L = readdlm("SL₃Z.Δ.coefficients")[:, 1] +Δ = GroupAlgebraElement(L, product_matrix) + +A = readdlm("matrix.A.Mosek") +κ = readdlm("kappa.Mosek")[1] + +# @show eigvals(A) +@assert isapprox(eigvals(A), abs(eigvals(A)), atol=TOL) +@assert A == Symmetric(A) + + +const A_sqrt = real(sqrtm(A)) + +SOS_EOI_fp_L₁, Ω_fp_dist = check_solution(κ, A_sqrt, Δ) + +κ_rational = rationalize(BigInt, κ;) +A_sqrt_rational = rationalize(BigInt, A_sqrt) +Δ_rational = rationalize(BigInt, Δ) + +SOS_EOI_rat_L₁, Ω_rat_dist = check_solution(κ_rational, A_sqrt_rational, Δ_rational)