1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-12-25 10:20:30 +01:00

import packages as ... instead of using

This includes:
* PermutationGroups as PG
* SymbolicWedderburn as SW
* StarAlgebras as SA
This commit is contained in:
Marek Kaluba 2024-02-15 22:42:17 +01:00
parent b23975a627
commit 27ce603872
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
20 changed files with 241 additions and 223 deletions

View File

@ -7,9 +7,9 @@ using JuMP
using Groups
import GroupsCore
using SymbolicWedderburn
import SymbolicWedderburn.StarAlgebras
import SymbolicWedderburn.PermutationGroups
import PermutationGroups as PG
import SymbolicWedderburn as SW
import StarAlgebras as SA
include("constraint_matrix.jl")
include("sos_sdps.jl")
@ -31,9 +31,9 @@ function group_algebra(G::Groups.Group, S = gens(G); halfradius::Integer)
@time E, sizes = Groups.wlmetric_ball(S; radius = 2halfradius)
@info "sizes = $(sizes)"
@info "computing the *-algebra structure for G"
@time RG = StarAlgebras.StarAlgebra(
@time RG = SA.StarAlgebra(
G,
StarAlgebras.Basis{UInt32}(E),
SA.Basis{UInt32}(E),
(sizes[halfradius], sizes[halfradius]);
precompute = false,
)

View File

@ -1,29 +1,24 @@
import SymbolicWedderburn.action
include("alphabet_permutation.jl")
include("sln_conjugation.jl")
include("spn_conjugation.jl")
include("autfn_conjugation.jl")
function SymbolicWedderburn.action(
act::SymbolicWedderburn.ByPermutations,
function SW.action(
act::SW.ByPermutations,
g::Groups.GroupElement,
α::StarAlgebras.AlgebraElement,
α::SA.AlgebraElement,
)
res = StarAlgebras.zero!(similar(α))
B = basis(parent(α))
for (idx, val) in StarAlgebras._nzpairs(StarAlgebras.coeffs(α))
res = SA.zero!(similar(α))
B = SA.basis(parent(α))
for (idx, val) in SA._nzpairs(SA.coeffs(α))
a = B[idx]
a_g = SymbolicWedderburn.action(act, g, a)
a_g = SW.action(act, g, a)
res[a_g] += val
end
return res
end
function Base.:^(
w::W,
p::PermutationGroups.AbstractPerm,
) where {W<:Groups.AbstractWord}
function Base.:^(w::W, p::PG.AbstractPermutation) where {W<:Groups.AbstractWord}
return W([l^p for l in w])
end

View File

@ -2,43 +2,37 @@
import Groups: Constructions
struct AlphabetPermutation{GEl,I} <: SymbolicWedderburn.ByPermutations
perms::Dict{GEl,PermutationGroups.Perm{I}}
struct AlphabetPermutation{GEl,I} <: SW.ByPermutations
perms::Dict{GEl,PG.Perm{I}}
end
function AlphabetPermutation(
A::Alphabet,
Γ::PermutationGroups.AbstractPermutationGroup,
Γ::PG.AbstractPermutationGroup,
op,
)
return AlphabetPermutation(
Dict(γ => inv(PermutationGroups.Perm([A[op(l, γ)] for l in A])) for γ in Γ),
Dict(γ => inv(PG.Perm([A[op(l, γ)] for l in A])) for γ in Γ),
)
end
function AlphabetPermutation(A::Alphabet, W::Constructions.WreathProduct, op)
return AlphabetPermutation(
Dict(
w => inv(PermutationGroups.Perm([A[op(op(l, w.p), w.n)] for l in A])) for
w => inv(PG.Perm([A[op(op(l, w.p), w.n)] for l in A])) for
w in W
),
)
end
function SymbolicWedderburn.action(
function SW.action(
act::AlphabetPermutation,
γ::Groups.GroupElement,
g::Groups.AbstractFPGroupElement,
)
G = parent(g)
w = SymbolicWedderburn.action(act, γ, word(g))
# w = SW.action(act, γ, word(g))
w = word(g)^(act.perms[γ])
return G(w)
end
function SymbolicWedderburn.action(
act::AlphabetPermutation,
γ::Groups.GroupElement,
w::Groups.AbstractWord,
)
return w^(act.perms[γ])
end

View File

@ -2,7 +2,7 @@
function _conj(
t::Groups.Transvection,
σ::PermutationGroups.AbstractPerm,
σ::PG.AbstractPermutation,
)
return Groups.Transvection(t.id, t.i^inv(σ), t.j^inv(σ), t.inv)
end
@ -22,5 +22,9 @@ function _conj(
return _flip(t, x.elts[i])
end
action_by_conjugation(sautfn::Groups.AutomorphismGroup{<:Groups.FreeGroup}, Σ::Groups.Group) =
AlphabetPermutation(alphabet(sautfn), Σ, _conj)
function action_by_conjugation(
sautfn::Groups.AutomorphismGroup{<:Groups.FreeGroup},
Σ::Groups.Group,
)
return AlphabetPermutation(alphabet(sautfn), Σ, _conj)
end

View File

@ -2,7 +2,7 @@
function _conj(
t::MatrixGroups.ElementaryMatrix{N},
σ::PermutationGroups.AbstractPerm,
σ::PG.AbstractPermutation,
) where {N}
return MatrixGroups.ElementaryMatrix{N}(t.i^inv(σ), t.j^inv(σ), t.val)
end
@ -16,5 +16,9 @@ function _conj(
return ifelse(just_one_flips, inv(t), t)
end
action_by_conjugation(sln::Groups.MatrixGroups.SpecialLinearGroup, Σ::Groups.Group) =
AlphabetPermutation(alphabet(sln), Σ, _conj)
function action_by_conjugation(
sln::Groups.MatrixGroups.SpecialLinearGroup,
Σ::Groups.Group,
)
return AlphabetPermutation(alphabet(sln), Σ, _conj)
end

View File

@ -2,10 +2,10 @@
function _conj(
s::MatrixGroups.ElementarySymplectic{N,T},
σ::PermutationGroups.AbstractPerm,
σ::PG.AbstractPermutation,
) where {N,T}
@assert iseven(N)
@assert PermutationGroups.degree(σ) == N ÷ 2 "Got degree = $(PermutationGroups.degree(σ)); N = $N"
@assert PG.degree(σ) N ÷ 2 "Got degree = $(PG.degree(σ)); N = $N"
n = N ÷ 2
@assert 1 s.i N
@assert 1 s.j N
@ -40,5 +40,9 @@ function _conj(
return ifelse(just_one_flips, inv(s), s)
end
action_by_conjugation(sln::Groups.MatrixGroups.SymplecticGroup, Σ::Groups.Group) =
AlphabetPermutation(alphabet(sln), Σ, _conj)
function action_by_conjugation(
sln::Groups.MatrixGroups.SymplecticGroup,
Σ::Groups.Group,
)
return AlphabetPermutation(alphabet(sln), Σ, _conj)
end

View File

@ -9,16 +9,16 @@ function augment_columns!(Q::AbstractMatrix)
end
function __sos_via_sqr!(
res::StarAlgebras.AlgebraElement,
res::SA.AlgebraElement,
P::AbstractMatrix;
augmented::Bool,
id = (b = basis(parent(res)); b[one(first(b))]),
id = (b = SA.basis(parent(res)); b[one(first(b))]),
)
A = parent(res)
mstr = A.mstructure
@assert size(mstr) == size(P)
StarAlgebras.zero!(res)
SA.zero!(res)
for j in axes(mstr, 2)
for i in axes(mstr, 1)
p = P[i, j]
@ -39,11 +39,11 @@ function __sos_via_sqr!(
end
function __sos_via_cnstr!(
res::StarAlgebras.AlgebraElement,
res::SA.AlgebraElement,
::AbstractMatrix,
cnstrs,
)
StarAlgebras.zero!(res)
SA.zero!(res)
for (g, A_g) in cnstrs
res[g] = dot(A_g, )
end
@ -51,17 +51,17 @@ function __sos_via_cnstr!(
end
function compute_sos(
A::StarAlgebras.StarAlgebra,
A::SA.StarAlgebra,
Q::AbstractMatrix;
augmented::Bool,
)
= Q' * Q
res = StarAlgebras.AlgebraElement(zeros(eltype(), length(basis(A))), A)
res = SA.AlgebraElement(zeros(eltype(), length(SA.basis(A))), A)
res = __sos_via_sqr!(res, ; augmented = augmented)
return res
end
function sufficient_λ(residual::StarAlgebras.AlgebraElement, λ; halfradius)
function sufficient_λ(residual::SA.AlgebraElement, λ; halfradius)
L1_norm = norm(residual, 1)
suff_λ = λ - 2.0^(2ceil(log2(halfradius))) * L1_norm
@ -87,10 +87,10 @@ function sufficient_λ(residual::StarAlgebras.AlgebraElement, λ; halfradius)
end
function sufficient_λ(
elt::StarAlgebras.AlgebraElement,
order_unit::StarAlgebras.AlgebraElement,
elt::SA.AlgebraElement,
order_unit::SA.AlgebraElement,
λ,
sos::StarAlgebras.AlgebraElement;
sos::SA.AlgebraElement;
halfradius,
)
@assert parent(elt) === parent(order_unit) == parent(sos)
@ -100,16 +100,15 @@ function sufficient_λ(
end
function certify_solution(
elt::StarAlgebras.AlgebraElement,
orderunit::StarAlgebras.AlgebraElement,
elt::SA.AlgebraElement,
orderunit::SA.AlgebraElement,
λ,
Q::AbstractMatrix{<:AbstractFloat};
halfradius,
augmented = iszero(StarAlgebras.aug(elt)) &&
iszero(StarAlgebras.aug(orderunit)),
augmented = iszero(SA.aug(elt)) && iszero(SA.aug(orderunit)),
)
should_we_augment =
!augmented && StarAlgebras.aug(elt) == StarAlgebras.aug(orderunit) == 0
!augmented && SA.aug(elt) == SA.aug(orderunit) == 0
Q = should_we_augment ? augment_columns!(Q) : Q
@time sos = compute_sos(parent(elt), Q; augmented = augmented)

View File

@ -147,13 +147,13 @@ function LinearAlgebra.dot(cm::ConstraintMatrix, m::AbstractMatrix{T}) where {T}
return convert(eltype(cm), cm.val) * (pos - neg)
end
function constraints(A::StarAlgebras.StarAlgebra; augmented::Bool)
return constraints(basis(A), A.mstructure; augmented = augmented)
function constraints(A::SA.StarAlgebra; augmented::Bool)
return constraints(SA.basis(A), A.mstructure; augmented = augmented)
end
function constraints(
basis::StarAlgebras.AbstractBasis,
mstr::StarAlgebras.MultiplicativeStructure;
basis::SA.AbstractBasis,
mstr::SA.MultiplicativeStructure;
augmented = false,
)
cnstrs = _constraints(
@ -170,7 +170,7 @@ function constraints(
end
function _constraints(
mstr::StarAlgebras.MultiplicativeStructure;
mstr::SA.MultiplicativeStructure;
augmented::Bool = false,
num_constraints = maximum(mstr),
id,

View File

@ -37,7 +37,7 @@ function _groupby(keys::AbstractVector{K}, vals::AbstractVector{V}) where {K,V}
return d
end
function laplacians(RG::StarAlgebras.StarAlgebra, S, grading)
function laplacians(RG::SA.StarAlgebra, S, grading)
d = _groupby(grading, S)
Δs = Dict(α => RG(length(Sα)) - sum(RG(s) for s in Sα) for (α, Sα) in d)
return Δs

View File

@ -1,16 +1,18 @@
__outer_dim(wd::WedderburnDecomposition) = size(first(direct_summands(wd)), 2)
function __outer_dim(wd::SW.WedderburnDecomposition)
return size(first(SW.direct_summands(wd)), 2)
end
function __group_of(wd::WedderburnDecomposition)
function __group_of(wd::SW.WedderburnDecomposition)
# this is veeeery hacky... ;)
return parent(first(keys(wd.hom.cache)))
end
function reconstruct(
Ms::AbstractVector{<:AbstractMatrix},
wbdec::WedderburnDecomposition,
wbdec::SW.WedderburnDecomposition,
)
n = __outer_dim(wbdec)
res = sum(zip(Ms, SymbolicWedderburn.direct_summands(wbdec))) do (M, ds)
res = sum(zip(Ms, SW.direct_summands(wbdec))) do (M, ds)
res = similar(M, n, n)
res = _reconstruct!(res, M, ds)
return res
@ -22,12 +24,12 @@ end
function _reconstruct!(
res::AbstractMatrix,
M::AbstractMatrix,
ds::SymbolicWedderburn.DirectSummand,
ds::SW.DirectSummand,
)
res .= zero(eltype(res))
if !iszero(M)
U = SymbolicWedderburn.image_basis(ds)
d = SymbolicWedderburn.degree(ds)
U = SW.image_basis(ds)
d = SW.degree(ds)
res = (U' * M * U) .* d
end
return res
@ -47,15 +49,15 @@ function average!(
res::AbstractMatrix,
M::AbstractMatrix,
G::Groups.Group,
hom::SymbolicWedderburn.InducedActionHomomorphism{
<:SymbolicWedderburn.ByPermutations,
hom::SW.InducedActionHomomorphism{
<:SW.ByPermutations,
},
)
res .= zero(eltype(res))
@assert size(M) == size(res)
o = Groups.order(Int, G)
for g in G
p = SymbolicWedderburn.induce(hom, g)
p = SW.induce(hom, g)
Threads.@threads for c in axes(res, 2)
for r in axes(res, 1)
if !iszero(M[r, c])

View File

@ -5,8 +5,8 @@ Formulate the dual to the sum of squares decomposition problem for `X - λ·u`.
See also [sos_problem_primal](@ref).
"""
function sos_problem_dual(
elt::StarAlgebras.AlgebraElement,
order_unit::StarAlgebras.AlgebraElement = zero(elt);
elt::SA.AlgebraElement,
order_unit::SA.AlgebraElement = zero(elt);
lower_bound = -Inf,
)
@assert parent(elt) == parent(order_unit)
@ -20,7 +20,7 @@ function sos_problem_dual(
# Symmetrized:
# 1 dual variable for every orbit of G acting on basis
model = Model()
JuMP.@variable(model, y[1:length(basis(algebra))])
JuMP.@variable(model, y[1:length(SA.basis(algebra))])
JuMP.@constraint(model, λ_dual, dot(order_unit, y) == 1)
JuMP.@constraint(model, psd, y[moment_matrix] in PSDCone())
@ -54,11 +54,10 @@ be added to the model. This may improve the accuracy of the solution if
The default `u = zero(X)` formulates a simple feasibility problem.
"""
function sos_problem_primal(
elt::StarAlgebras.AlgebraElement,
order_unit::StarAlgebras.AlgebraElement = zero(elt);
elt::SA.AlgebraElement,
order_unit::SA.AlgebraElement = zero(elt);
upper_bound = Inf,
augmented::Bool = iszero(StarAlgebras.aug(elt)) &&
iszero(StarAlgebras.aug(order_unit)),
augmented::Bool = iszero(SA.aug(elt)) && iszero(SA.aug(order_unit)),
)
@assert parent(elt) === parent(order_unit)
@ -80,11 +79,11 @@ function sos_problem_primal(
end
JuMP.@objective(model, Max, λ)
for b in basis(parent(elt))
for b in SA.basis(parent(elt))
JuMP.@constraint(model, elt(b) - λ * order_unit(b) == dot(A[b], P))
end
else
for b in basis(parent(elt))
for b in SA.basis(parent(elt))
JuMP.@constraint(model, elt(b) == dot(A[b], P))
end
end
@ -94,7 +93,7 @@ end
function invariant_constraint!(
result::AbstractMatrix,
basis::StarAlgebras.AbstractBasis,
basis::SA.AbstractBasis,
cnstrs::AbstractDict{K,<:ConstraintMatrix},
invariant_vec::SparseVector,
) where {K}
@ -128,14 +127,14 @@ function invariant_constraint(basis, cnstrs, invariant_vec)
return sparse(I, J, V, size(_M)...)
end
function isorth_projection(ds::SymbolicWedderburn.DirectSummand)
U = SymbolicWedderburn.image_basis(ds)
function isorth_projection(ds::SW.DirectSummand)
U = SW.image_basis(ds)
return isapprox(U * U', I)
end
function sos_problem_primal(
elt::StarAlgebras.AlgebraElement,
wedderburn::WedderburnDecomposition;
elt::SA.AlgebraElement,
wedderburn::SW.WedderburnDecomposition;
kwargs...,
)
return sos_problem_primal(elt, zero(elt), wedderburn; kwargs...)
@ -176,31 +175,30 @@ import ProgressMeter
__show_itrs(n, total) = () -> [(Symbol("constraint"), "$n/$total")]
function sos_problem_primal(
elt::StarAlgebras.AlgebraElement,
orderunit::StarAlgebras.AlgebraElement,
wedderburn::WedderburnDecomposition;
elt::SA.AlgebraElement,
orderunit::SA.AlgebraElement,
wedderburn::SW.WedderburnDecomposition;
upper_bound = Inf,
augmented = iszero(StarAlgebras.aug(elt)) &&
iszero(StarAlgebras.aug(orderunit)),
augmented = iszero(SA.aug(elt)) && iszero(SA.aug(orderunit)),
check_orthogonality = true,
show_progress = false,
)
@assert parent(elt) === parent(orderunit)
if check_orthogonality
if any(!isorth_projection, direct_summands(wedderburn))
if any(!isorth_projection, SW.direct_summands(wedderburn))
error(
"Wedderburn decomposition contains a non-orthogonal projection",
)
end
end
id_one = findfirst(invariant_vectors(wedderburn)) do v
b = basis(parent(elt))
id_one = findfirst(SW.invariant_vectors(wedderburn)) do v
b = SA.basis(parent(elt))
return sparsevec([b[one(first(b))]], [1 // 1], length(v)) == v
end
prog = ProgressMeter.Progress(
length(invariant_vectors(wedderburn));
length(SW.invariant_vectors(wedderburn));
dt = 1,
desc = "Adding constraints: ",
enabled = show_progress,
@ -225,7 +223,7 @@ function sos_problem_primal(
end
# semidefinite constraints as described by wedderburn
Ps = map(direct_summands(wedderburn)) do ds
Ps = map(SW.direct_summands(wedderburn)) do ds
dim = size(ds, 1)
P = JuMP.@variable(model, [1:dim, 1:dim], Symmetric)
JuMP.@constraint(model, P in PSDCone())
@ -238,14 +236,14 @@ function sos_problem_primal(
_eps = 10 * eps(T) * max(size(parent(elt).mstructure)...)
end
X = StarAlgebras.coeffs(elt)
U = StarAlgebras.coeffs(orderunit)
X = SA.coeffs(elt)
U = SA.coeffs(orderunit)
# defining constraints based on the multiplicative structure
cnstrs = constraints(parent(elt); augmented = augmented)
# adding linear constraints: one per orbit
for (i, iv) in enumerate(invariant_vectors(wedderburn))
for (i, iv) in enumerate(SW.invariant_vectors(wedderburn))
ProgressMeter.next!(prog; showvalues = __show_itrs(i, prog.n))
augmented && i == id_one && continue
# i == 500 && break
@ -253,9 +251,9 @@ function sos_problem_primal(
x = dot(X, iv)
u = dot(U, iv)
spM_orb = invariant_constraint(basis(parent(elt)), cnstrs, iv)
spM_orb = invariant_constraint(SA.basis(parent(elt)), cnstrs, iv)
Ms = SymbolicWedderburn.diagonalize!(
Ms = SW.diagonalize!(
Ms,
spM_orb,
wedderburn;

View File

@ -1,30 +1,40 @@
import SymbolicWedderburn.PermutationGroups.AbstractPerm
# move to Groups
Base.keys(a::Alphabet) = keys(1:length(a))
## the old 1812.03456 definitions
isopposite(σ::AbstractPerm, τ::AbstractPerm, i=1, j=2) =
i^σ i^τ && i^σ j^τ && j^σ i^τ && j^σ j^τ
function isopposite(
σ::PG.AbstractPermutation,
τ::PG.AbstractPermutation,
i = 1,
j = 2,
)
return i^σ i^τ && i^σ j^τ && j^σ i^τ && j^σ j^τ
end
isadjacent(σ::AbstractPerm, τ::AbstractPerm, i=1, j=2) =
(i^σ == i^τ && j^σ j^τ) || # first equal, second differ
(j^σ == j^τ && i^σ i^τ) || # second equal, first differ
(i^σ == j^τ && j^σ i^τ) || # first σ equal to second τ
(j^σ == i^τ && i^σ j^τ) # second σ equal to first τ
function isadjacent(
σ::PG.AbstractPermutation,
τ::PG.AbstractPermutation,
i = 1,
j = 2,
)
return (i^σ == i^τ && j^σ j^τ) || # first equal, second differ
(j^σ == j^τ && i^σ i^τ) || # second equal, first differ
(i^σ == j^τ && j^σ i^τ) || # first σ equal to second τ
(j^σ == i^τ && i^σ j^τ) # second σ equal to first τ
end
function _ncycle(start, length, n=start + length - 1)
p = PermutationGroups.Perm(Int8(n))
p = Vector{UInt8}(1:n)
@assert n start + length - 1
for k in start:start+length-2
p[k] = k + 1
end
p[start+length-1] = start
return p
return PG.Perm(p)
end
alternating_group(n::Integer) = PermutationGroups.PermGroup([_ncycle(i, 3) for i in 1:n-2])
alternating_group(n::Integer) = PG.PermGroup([_ncycle(i, 3) for i in 1:n-2])
function small_gens(G::MatrixGroups.SpecialLinearGroup)
A = alphabet(G)
@ -46,31 +56,31 @@ function small_gens(G::Groups.AutomorphismGroup{<:FreeGroup})
return union!(S, inv.(S))
end
function small_laplacian(RG::StarAlgebras.StarAlgebra)
G = StarAlgebras.object(RG)
function small_laplacian(RG::SA.StarAlgebra)
G = SA.object(RG)
S₂ = small_gens(G)
return length(S₂) * one(RG) - sum(RG(s) for s in S₂)
end
function SqAdjOp(A::StarAlgebras.StarAlgebra, n::Integer, Δ₂=small_laplacian(A))
function SqAdjOp(A::SA.StarAlgebra, n::Integer, Δ₂ = small_laplacian(A))
@assert parent(Δ₂) === A
alt_n = alternating_group(n)
G = StarAlgebras.object(A)
G = SA.object(A)
act = action_by_conjugation(G, alt_n)
Δ₂s = Dict(σ => SymbolicWedderburn.action(act, σ, Δ₂) for σ in alt_n)
Δ₂s = Dict(σ => SW.action(act, σ, Δ₂) for σ in alt_n)
sq, adj, op = zero(A), zero(A), zero(A)
tmp = zero(A)
for σ in alt_n
StarAlgebras.add!(sq, sq, StarAlgebras.mul!(tmp, Δ₂s[σ], Δ₂s[σ]))
SA.add!(sq, sq, SA.mul!(tmp, Δ₂s[σ], Δ₂s[σ]))
for τ in alt_n
if isopposite(σ, τ)
StarAlgebras.add!(op, op, StarAlgebras.mul!(tmp, Δ₂s[σ], Δ₂s[τ]))
SA.add!(op, op, SA.mul!(tmp, Δ₂s[σ], Δ₂s[τ]))
elseif isadjacent(σ, τ)
StarAlgebras.add!(adj, adj, StarAlgebras.mul!(tmp, Δ₂s[σ], Δ₂s[τ]))
SA.add!(adj, adj, SA.mul!(tmp, Δ₂s[σ], Δ₂s[τ]))
end
end
end

View File

@ -33,7 +33,7 @@
@testset "SL(3,F₅)" begin
N = 3
G = MatrixGroups.SpecialLinearGroup{N}(
SymbolicWedderburn.Characters.FiniteFields.GF{5},
SW.Characters.FiniteFields.GF{5},
)
RG, S, sizes = PropertyT.group_algebra(G; halfradius = 2)

View File

@ -5,15 +5,15 @@
@info "running tests for" G
RG, S, sizes = PropertyT.group_algebra(G; halfradius = 2)
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
Σ = PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
P = PG.PermGroup(PG.perm"(1,2)", PG.Perm(circshift(1:N, -1)))
Σ = Groups.Constructions.WreathProduct(PG.PermGroup(PG.perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(G, Σ)
wd = WedderburnDecomposition(
wd = SW.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[2]]),
SA.basis(RG),
SA.Basis{UInt16}(@view SA.basis(RG)[1:sizes[2]]),
)
@info wd
@ -54,15 +54,18 @@
Δ = RSL(length(S)) - sum(RSL(s) for s in S)
@testset "Wedderburn formulation" begin
P = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
Σ = PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
P = PG.PermGroup(PG.perm"(1,2)", PG.Perm(circshift(1:n, -1)))
Σ = Groups.Constructions.WreathProduct(
PG.PermGroup(PG.perm"(1,2)"),
P,
)
act = PropertyT.action_by_conjugation(SL, Σ)
wd = WedderburnDecomposition(
wd = SW.WedderburnDecomposition(
Rational{Int},
Σ,
act,
basis(RSL),
StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]]),
SA.basis(RSL),
SA.Basis{UInt16}(@view SA.basis(RSL)[1:sizes[2]]),
)
@info wd
@ -78,12 +81,12 @@
augmented = false,
)
wdfl = SymbolicWedderburn.WedderburnDecomposition(
wdfl = SW.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RSL),
StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]]),
SA.basis(RSL),
SA.Basis{UInt16}(@view SA.basis(RSL)[1:sizes[2]]),
)
model, varP = PropertyT.sos_problem_primal(
@ -147,16 +150,19 @@
unit = Δ
ub = Inf
P = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
Σ = PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
P = PG.PermGroup(PG.perm"(1,2)", PG.Perm(circshift(1:n, -1)))
Σ = Groups.Constructions.WreathProduct(
PG.PermGroup(PG.perm"(1,2)"),
P,
)
act = PropertyT.action_by_conjugation(SL, Σ)
wdfl = SymbolicWedderburn.WedderburnDecomposition(
wdfl = SW.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RSL),
StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]]),
SA.basis(RSL),
SA.Basis{UInt16}(@view SA.basis(RSL)[1:sizes[2]]),
)
@info wdfl

View File

@ -8,11 +8,11 @@ using SparseArrays
end
@testset "unit tests" begin
@test PropertyT.isopposite(perm"(1,2,3)(4)", perm"(1,4,2)")
@test PropertyT.isadjacent(perm"(1,2,3)", perm"(1,2)(3)")
@test PropertyT.isopposite(PG.perm"(1,2,3)(4)", PG.perm"(1,4,2)")
@test PropertyT.isadjacent(PG.perm"(1,2,3)", PG.perm"(1,2)(3)")
@test !PropertyT.isopposite(perm"(1,2,3)", perm"(1,2)(3)")
@test !PropertyT.isadjacent(perm"(1,4)", perm"(2,3)(4)")
@test !PropertyT.isopposite(PG.perm"(1,2,3)", PG.perm"(1,2)(3)")
@test !PropertyT.isadjacent(PG.perm"(1,4)", PG.perm"(2,3)(4)")
@test isconstant_on_orbit([1, 1, 1, 2, 2], [2, 3])
@test !isconstant_on_orbit([1, 1, 1, 2, 2], [2, 3, 4])
@ -29,19 +29,19 @@ using SparseArrays
RG(length(S)) - sum(RG(s) for s in S)
end
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
Σ = PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
P = PG.PermGroup(PG.perm"(1,2)", PG.Perm(circshift(1:N, -1)))
Σ = Groups.Constructions.WreathProduct(PG.PermGroup(PG.perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(G, Σ)
wd = WedderburnDecomposition(
wd = SW.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[2]]),
SA.basis(RG),
SA.Basis{UInt16}(@view SA.basis(RG)[1:sizes[2]]),
)
@info wd
ivs = SymbolicWedderburn.invariant_vectors(wd)
ivs = SW.invariant_vectors(wd)
sq, adj, op = PropertyT.SqAdjOp(RG, N)
@ -105,16 +105,16 @@ end
Δ = RG(length(S)) - sum(RG(s) for s in S)
P = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
Σ = PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
P = PG.PermGroup(PG.perm"(1,2)", PG.Perm(circshift(1:n, -1)))
Σ = Groups.Constructions.WreathProduct(PG.PermGroup(PG.perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(G, Σ)
wd = SymbolicWedderburn.WedderburnDecomposition(
wd = SW.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[2]]),
SA.basis(RG),
SA.Basis{UInt16}(@view SA.basis(RG)[1:sizes[2]]),
)
@info wd
@ -193,16 +193,16 @@ end
Δ = RG(length(S)) - sum(RG(s) for s in S)
P = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
Σ = PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
P = PG.PermGroup(PG.perm"(1,2)", PG.Perm(circshift(1:n, -1)))
Σ = Groups.Constructions.WreathProduct(PG.PermGroup(PG.perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(G, Σ)
wd = SymbolicWedderburn.WedderburnDecomposition(
wd = SW.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[2]]),
SA.basis(RG),
SA.Basis{UInt16}(@view SA.basis(RG)[1:sizes[2]]),
)
@info wd

View File

@ -20,8 +20,10 @@ end
end
@testset "Exceptional root systems" begin
Base.:^(t::NTuple{N}, p::PG.AbstractPermutation) where {N} =
ntuple(i -> t[i^p], N)
@testset "F4" begin
F4 = let Σ = PermutationGroups.PermGroup(perm"(1,2,3,4)", perm"(1,2)")
F4 = let Σ = PG.PermGroup(PG.perm"(1,2,3,4)", PG.perm"(1,2)")
long = let x = (1, 1, 0, 0) .// 1
PropertyT.Roots.Root.(
union(
@ -90,9 +92,9 @@ end
@testset "E6-7-8 exceptional root systems" begin
E8 =
let Σ = PermutationGroups.PermGroup(
perm"(1,2,3,4,5,6,7,8)",
perm"(1,2)",
let Σ = PG.PermGroup(
PG.perm"(1,2,3,4,5,6,7,8)",
PG.perm"(1,2)",
)
long = let x = (1, 1, 0, 0, 0, 0, 0, 0) .// 1
PropertyT.Roots.Root.(

View File

@ -1,5 +1,5 @@
function test_action(basis, group, act)
action = SymbolicWedderburn.action
action = SW.action
return @testset "action definition" begin
@test all(basis) do b
e = one(group)
@ -22,7 +22,7 @@ function test_action(basis, group, act)
g_h
end
action = SymbolicWedderburn.action
action = SW.action
@test action(act, g, a) in basis
@test action(act, h, a) in basis
@test action(act, h, action(act, g, a)) == action(act, g * h, a)
@ -33,7 +33,7 @@ function test_action(basis, group, act)
return x == y
end
if act isa SymbolicWedderburn.ByPermutations
if act isa SW.ByPermutations
@test all(basis) do b
return action(act, g, b) basis && action(act, h, b) basis
end
@ -50,69 +50,68 @@ end
RSL, S, sizes = PropertyT.group_algebra(SL; halfradius = 2)
@testset "Permutation action" begin
Γ = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
Γ = PG.PermGroup(PG.perm"(1,2)", PG.Perm(circshift(1:n, -1)))
ΓpA = PropertyT.action_by_conjugation(SL, Γ)
test_action(basis(RSL), Γ, ΓpA)
test_action(SA.basis(RSL), Γ, ΓpA)
@testset "mps is successful" begin
charsΓ =
SymbolicWedderburn.Character{
SW.Character{
Rational{Int},
}.(SymbolicWedderburn.irreducible_characters(Γ))
}.(SW.irreducible_characters(Γ))
= SymbolicWedderburn._group_algebra(Γ)
= SW._group_algebra(Γ)
@time mps, ranks =
SymbolicWedderburn.minimal_projection_system(charsΓ, )
SW.minimal_projection_system(charsΓ, )
@test all(isone, ranks)
end
@testset "Wedderburn decomposition" begin
wd = SymbolicWedderburn.WedderburnDecomposition(
wd = SW.WedderburnDecomposition(
Rational{Int},
Γ,
ΓpA,
basis(RSL),
StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]]),
SA.basis(RSL),
SA.Basis{UInt16}(@view SA.basis(RSL)[1:sizes[2]]),
)
@test length(invariant_vectors(wd)) == 918
@test SymbolicWedderburn.size.(direct_summands(wd), 1) ==
[40, 23, 18]
@test all(issimple, direct_summands(wd))
@test length(SW.invariant_vectors(wd)) == 918
@test size.(SW.direct_summands(wd), 1) == [23, 18, 40]
@test all(SW.issimple, SW.direct_summands(wd))
end
end
@testset "Wreath action" begin
Γ = let P = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
Γ = let P = PG.PermGroup(PG.perm"(1,2)", PG.Perm(circshift(1:n, -1)))
Groups.Constructions.WreathProduct(PG.PermGroup(PG.perm"(1,2)"), P)
end
ΓpA = PropertyT.action_by_conjugation(SL, Γ)
test_action(basis(RSL), Γ, ΓpA)
test_action(SA.basis(RSL), Γ, ΓpA)
@testset "mps is successful" begin
charsΓ =
SymbolicWedderburn.Character{
SW.Character{
Rational{Int},
}.(SymbolicWedderburn.irreducible_characters(Γ))
}.(SW.irreducible_characters(Γ))
= SymbolicWedderburn._group_algebra(Γ)
= SW._group_algebra(Γ)
@time mps, ranks =
SymbolicWedderburn.minimal_projection_system(charsΓ, )
SW.minimal_projection_system(charsΓ, )
@test all(isone, ranks)
end
@testset "Wedderburn decomposition" begin
wd = SymbolicWedderburn.WedderburnDecomposition(
wd = SW.WedderburnDecomposition(
Rational{Int},
Γ,
ΓpA,
basis(RSL),
StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]]),
SA.basis(RSL),
SA.Basis{UInt16}(@view SA.basis(RSL)[1:sizes[2]]),
)
@test length(invariant_vectors(wd)) == 247
@ -130,31 +129,31 @@ end
RSAutFn, S, sizes = PropertyT.group_algebra(SAutFn; halfradius = 1)
@testset "Permutation action" begin
Γ = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
Γ = PG.PermGroup(PG.perm"(1,2)", PG.Perm(circshift(1:n, -1)))
ΓpA = PropertyT.action_by_conjugation(SAutFn, Γ)
test_action(basis(RSAutFn), Γ, ΓpA)
test_action(SA.basis(RSAutFn), Γ, ΓpA)
@testset "mps is successful" begin
charsΓ =
SymbolicWedderburn.Character{
SW.Character{
Rational{Int},
}.(SymbolicWedderburn.irreducible_characters(Γ))
}.(SW.irreducible_characters(Γ))
= SymbolicWedderburn._group_algebra(Γ)
= SW._group_algebra(Γ)
@time mps, ranks =
SymbolicWedderburn.minimal_projection_system(charsΓ, )
SW.minimal_projection_system(charsΓ, )
@test all(isone, ranks)
end
@testset "Wedderburn decomposition" begin
wd = SymbolicWedderburn.WedderburnDecomposition(
wd = SW.WedderburnDecomposition(
Rational{Int},
Γ,
ΓpA,
basis(RSAutFn),
StarAlgebras.Basis{UInt16}(@view basis(RSAutFn)[1:sizes[1]]),
SA.basis(RSAutFn),
SA.Basis{UInt16}(@view SA.basis(RSAutFn)[1:sizes[1]]),
)
@test length(invariant_vectors(wd)) == 93
@ -165,34 +164,34 @@ end
end
@testset "Wreath action" begin
Γ = let P = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
Γ = let P = PG.PermGroup(PG.perm"(1,2)", PG.Perm(circshift(1:n, -1)))
Groups.Constructions.WreathProduct(PG.PermGroup(PG.perm"(1,2)"), P)
end
ΓpA = PropertyT.action_by_conjugation(SAutFn, Γ)
test_action(basis(RSAutFn), Γ, ΓpA)
test_action(SA.basis(RSAutFn), Γ, ΓpA)
@testset "mps is successful" begin
charsΓ =
SymbolicWedderburn.Character{
SW.Character{
Rational{Int},
}.(SymbolicWedderburn.irreducible_characters(Γ))
}.(SW.irreducible_characters(Γ))
= SymbolicWedderburn._group_algebra(Γ)
= SW._group_algebra(Γ)
@time mps, ranks =
SymbolicWedderburn.minimal_projection_system(charsΓ, )
SW.minimal_projection_system(charsΓ, )
@test all(isone, ranks)
end
@testset "Wedderburn decomposition" begin
wd = SymbolicWedderburn.WedderburnDecomposition(
wd = SW.WedderburnDecomposition(
Rational{Int},
Γ,
ΓpA,
basis(RSAutFn),
StarAlgebras.Basis{UInt16}(@view basis(RSAutFn)[1:sizes[1]]),
SA.basis(RSAutFn),
SA.Basis{UInt16}(@view SA.basis(RSAutFn)[1:sizes[1]]),
)
@test length(invariant_vectors(wd)) == 18

View File

@ -29,7 +29,7 @@ function check_positivity(
halfradius = 2,
optimizer,
)
@assert aug(elt) == aug(unit) == 0
@assert SA.aug(elt) == SA.aug(unit) == 0
@time sos_problem, Ps =
PropertyT.sos_problem_primal(elt, unit, wd; upper_bound = upper_bound)

View File

@ -4,7 +4,7 @@
p = 7
halfradius = 3
G = MatrixGroups.SpecialLinearGroup{N}(
SymbolicWedderburn.Characters.FiniteFields.GF{p},
SW.Characters.FiniteFields.GF{p},
)
RG, S, sizes = PropertyT.group_algebra(G; halfradius = 3)
@ -51,18 +51,19 @@
end
@testset "Wedderburn decomposition" begin
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
Σ = PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
P = PG.PermGroup(PG.perm"(1,2)", PG.Perm(circshift(1:N, -1)))
Σ = Groups.Constructions.WreathProduct(
PG.PermGroup(PG.perm"(1,2)"),
P,
)
act = PropertyT.action_by_conjugation(G, Σ)
wd = WedderburnDecomposition(
wd = SW.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(
@view basis(RG)[1:sizes[halfradius]]
),
SA.basis(RG),
SA.Basis{UInt16}(@view SA.basis(RG)[1:sizes[halfradius]]),
)
status, certified, λ_cert = check_positivity(

View File

@ -7,9 +7,9 @@ using Groups.GroupsCore
import Groups.MatrixGroups
using PropertyT
using SymbolicWedderburn
using SymbolicWedderburn.StarAlgebras
using SymbolicWedderburn.PermutationGroups
import SymbolicWedderburn as SW
import StarAlgebras as SA
import PermutationGroups as PG
include("optimizers.jl")
include("check_positivity.jl")