1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-29 09:45:27 +01:00

Merge pull request #4 from kalmarek/enh/AA_MatrixAlgebra

Use Matrix Algebras
This commit is contained in:
kalmarek 2019-07-05 20:56:04 +02:00 committed by GitHub
commit 38bf6605ca
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 670 additions and 159 deletions

View File

@ -6,6 +6,7 @@ os:
julia: julia:
- 1.0 - 1.0
- 1.1 - 1.1
- 1.2
- nightly - nightly
notifications: notifications:
email: true email: true

View File

@ -2,9 +2,9 @@
[[AbstractAlgebra]] [[AbstractAlgebra]]
deps = ["InteractiveUtils", "LinearAlgebra", "Markdown", "Random", "SparseArrays", "Test"] deps = ["InteractiveUtils", "LinearAlgebra", "Markdown", "Random", "SparseArrays", "Test"]
git-tree-sha1 = "c0d57a3f0618bfbb214005860b9b5e5bceafa61c" git-tree-sha1 = "0d4f7283435bd7e12a703a3fd58aa11224a96019"
uuid = "c3fe647b-3220-5bb0-a1ea-a7954cac585d" uuid = "c3fe647b-3220-5bb0-a1ea-a7954cac585d"
version = "0.5.0" version = "0.5.2"
[[Base64]] [[Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
@ -16,10 +16,10 @@ uuid = "9e28174c-4ba2-5203-b857-d8d62c4213ee"
version = "0.8.10" version = "0.8.10"
[[BinaryProvider]] [[BinaryProvider]]
deps = ["Libdl", "SHA"] deps = ["Libdl", "Logging", "SHA"]
git-tree-sha1 = "c7361ce8a2129f20b0e05a89f7070820cfed6648" git-tree-sha1 = "8153fd64131cd00a79544bb23788877741f627bb"
uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232" uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232"
version = "0.5.4" version = "0.5.5"
[[Blosc]] [[Blosc]]
deps = ["BinaryProvider", "CMakeWrapper", "Compat", "Libdl"] deps = ["BinaryProvider", "CMakeWrapper", "Compat", "Libdl"]
@ -124,19 +124,19 @@ version = "0.10.3"
[[GroupRings]] [[GroupRings]]
deps = ["AbstractAlgebra", "LinearAlgebra", "Markdown", "SparseArrays"] deps = ["AbstractAlgebra", "LinearAlgebra", "Markdown", "SparseArrays"]
git-tree-sha1 = "6d43558d0e7946d4e0e3d94a108344b2514e95b7" git-tree-sha1 = "9f41bad54217ce2605c13f10b79d1221c259ed32"
repo-rev = "master" repo-rev = "master"
repo-url = "https://github.com/kalmarek/GroupRings.jl" repo-url = "https://github.com/kalmarek/GroupRings.jl"
uuid = "0befed6a-bd73-11e8-1e41-a1190947c2f5" uuid = "0befed6a-bd73-11e8-1e41-a1190947c2f5"
version = "0.2.1" version = "0.3.0"
[[Groups]] [[Groups]]
deps = ["AbstractAlgebra", "LinearAlgebra", "Markdown"] deps = ["AbstractAlgebra", "LinearAlgebra", "Markdown"]
git-tree-sha1 = "64dcaa46affb4568501d35e6fae36a71a7ae5cbb" git-tree-sha1 = "bf267f82f4c313a6deb3db64efc7893b139d4340"
repo-rev = "master" repo-rev = "master"
repo-url = "https://github.com/kalmarek/Groups.jl" repo-url = "https://github.com/kalmarek/Groups.jl"
uuid = "5d8bd718-bd84-11e8-3b40-ad14f4a32557" uuid = "5d8bd718-bd84-11e8-3b40-ad14f4a32557"
version = "0.2.1" version = "0.2.2"
[[HDF5]] [[HDF5]]
deps = ["BinDeps", "Blosc", "Homebrew", "Libdl", "Mmap", "WinRPM"] deps = ["BinDeps", "Blosc", "Homebrew", "Libdl", "Mmap", "WinRPM"]
@ -192,9 +192,9 @@ version = "0.4.1"
[[LibCURL]] [[LibCURL]]
deps = ["BinaryProvider", "Libdl"] deps = ["BinaryProvider", "Libdl"]
git-tree-sha1 = "5ee138c679fa202ebe211b2683d1eee2a87b3dbe" git-tree-sha1 = "fd5fc15f2a04608fe1435a769dbbfc7959ff1daa"
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
version = "0.5.1" version = "0.5.2"
[[LibExpat]] [[LibExpat]]
deps = ["Compat"] deps = ["Compat"]
@ -246,12 +246,6 @@ git-tree-sha1 = "ce3b85e484a5d4c71dd5316215069311135fa9f2"
uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
version = "0.3.2" version = "0.3.2"
[[Nemo]]
deps = ["AbstractAlgebra", "BinaryProvider", "InteractiveUtils", "Libdl", "LinearAlgebra", "Markdown", "Test"]
git-tree-sha1 = "b359c25b708c3edcc2f17345d59da7169c207385"
uuid = "2edaba10-b0f1-5616-af89-8c11ac63239a"
version = "0.14.0"
[[OrderedCollections]] [[OrderedCollections]]
deps = ["Random", "Serialization", "Test"] deps = ["Random", "Serialization", "Test"]
git-tree-sha1 = "c4c13474d23c60d20a67b217f1d7f22a40edf8f1" git-tree-sha1 = "c4c13474d23c60d20a67b217f1d7f22a40edf8f1"

View File

@ -1,7 +1,7 @@
name = "PropertyT" name = "PropertyT"
uuid = "03b72c93-0167-51e2-8a1e-eb4ff1fb940d" uuid = "03b72c93-0167-51e2-8a1e-eb4ff1fb940d"
authors = ["Marek Kaluba <kalmar@amu.edu.pl>"] authors = ["Marek Kaluba <kalmar@amu.edu.pl>"]
version = "0.2.1" version = "0.3.0"
[deps] [deps]
AbstractAlgebra = "c3fe647b-3220-5bb0-a1ea-a7954cac585d" AbstractAlgebra = "c3fe647b-3220-5bb0-a1ea-a7954cac585d"
@ -14,12 +14,11 @@ JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Markdown = "d6f4376e-aef5-505a-96c1-9c027394607a" Markdown = "d6f4376e-aef5-505a-96c1-9c027394607a"
MathProgBase = "fdba3010-5040-5b88-9595-932c9decdf73" MathProgBase = "fdba3010-5040-5b88-9595-932c9decdf73"
Nemo = "2edaba10-b0f1-5616-af89-8c11ac63239a"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7" Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[compat] [compat]
GroupRings = "^0.2.0" GroupRings = "^0.3.0"
Groups = "^0.2.1" Groups = "^0.2.1"
JuMP = "^0.19.0" JuMP = "^0.19.0"

View File

@ -10,9 +10,9 @@ abstract type Settings end
struct Naive{El} <: Settings struct Naive{El} <: Settings
name::String name::String
G::Group G::Union{Group, NCRing}
S::Vector{El} S::Vector{El}
radius::Int halfradius::Int
upper_bound::Float64 upper_bound::Float64
solver::JuMP.OptimizerFactory solver::JuMP.OptimizerFactory
@ -21,10 +21,10 @@ end
struct Symmetrized{El} <: Settings struct Symmetrized{El} <: Settings
name::String name::String
G::Group G::Union{Group, NCRing}
S::Vector{El} S::Vector{El}
autS::Group autS::Group
radius::Int halfradius::Int
upper_bound::Float64 upper_bound::Float64
solver::JuMP.OptimizerFactory solver::JuMP.OptimizerFactory
@ -32,15 +32,15 @@ struct Symmetrized{El} <: Settings
end end
function Settings(name::String, function Settings(name::String,
G::Group, S::Vector{<:GroupElem}, solver::JuMP.OptimizerFactory; G::Union{Group, NCRing}, S::AbstractVector{El}, solver::JuMP.OptimizerFactory;
radius::Integer=2, upper_bound::Float64=1.0, warmstart=true) halfradius::Integer=2, upper_bound::Float64=1.0, warmstart=true) where El <: Union{GroupElem, NCRingElem}
return Naive(name, G, S, radius, upper_bound, solver, warmstart) return Naive(name, G, S, halfradius, upper_bound, solver, warmstart)
end end
function Settings(name::String, function Settings(name::String,
G::Group, S::Vector{<:GroupElem}, autS::Group, solver::JuMP.OptimizerFactory; G::Union{Group, NCRing}, S::AbstractVector{El}, autS::Group, solver::JuMP.OptimizerFactory;
radius::Integer=2, upper_bound::Float64=1.0, warmstart=true) halfradius::Integer=2, upper_bound::Float64=1.0, warmstart=true) where El <: Union{GroupElem, NCRingElem}
return Symmetrized(name, G, S, autS, radius, upper_bound, solver, warmstart) return Symmetrized(name, G, S, autS, halfradius, upper_bound, solver, warmstart)
end end
prefix(s::Naive) = s.name prefix(s::Naive) = s.name
@ -79,12 +79,13 @@ end
############################################################################### ###############################################################################
function warmstart(sett::Settings) function warmstart(sett::Settings)
warmstart_fname = filename(sett, :warmstart)
try try
ws = load(filename(sett, :warmstart), "warmstart") ws = load(filename(sett, :warmstart), "warmstart")
@info "Loaded $(filename(sett, :warmstart))." @info "Loaded $warmstart_fname."
return ws return ws
catch catch ex
@info "Couldn't load $(filename(sett, :warmstart))." @warn "$(ex.msg). Not providing a warmstart to the solver."
return nothing return nothing
end end
end end
@ -128,10 +129,12 @@ function approximate_by_SOS(sett::Symmetrized,
orbit_data = try orbit_data = try
orbit_data = load(filename(sett, :OrbitData), "OrbitData") orbit_data = load(filename(sett, :OrbitData), "OrbitData")
@info "Loaded Orbit Data" @info "Loaded orbit data."
orbit_data orbit_data
catch catch ex
@warn ex.msg
isdefined(parent(orderunit), :basis) || throw("You need to define basis of Group Ring to compute orbit decomposition!") isdefined(parent(orderunit), :basis) || throw("You need to define basis of Group Ring to compute orbit decomposition!")
@info "Computing orbit and Wedderburn decomposition..."
orbit_data = OrbitData(parent(orderunit), sett.autS) orbit_data = OrbitData(parent(orderunit), sett.autS)
save(filename(sett, :OrbitData), "OrbitData", orbit_data) save(filename(sett, :OrbitData), "OrbitData", orbit_data)
orbit_data orbit_data
@ -245,7 +248,7 @@ function print_summary(sett::Settings)
separator = "="^76 separator = "="^76
info_strs = [separator, info_strs = [separator,
"Running tests for $(sett.name):", "Running tests for $(sett.name):",
"Upper bound for λ: $(sett.upper_bound), on radius $(sett.radius).", "Upper bound for λ: $(sett.upper_bound), on halfradius $(sett.halfradius).",
"Warmstart: $(sett.warmstart)", "Warmstart: $(sett.warmstart)",
"Results will be stored in ./$(PropertyT.prepath(sett))", "Results will be stored in ./$(PropertyT.prepath(sett))",
"Solver: $(typeof(sett.solver()))", "Solver: $(typeof(sett.solver()))",
@ -275,26 +278,39 @@ function spectral_gap(sett::Settings)
isdir(fp) || mkpath(fp) isdir(fp) || mkpath(fp)
Δ = try Δ = try
@info "Loading precomputed Δ..." Δ = loadGRElem(filename(sett,), sett.G)
loadGRElem(filename(sett,), sett.G) @info "Loaded precomputed Δ."
catch Δ
# compute catch ex
Δ = Laplacian(sett.S, sett.radius) @warn ex.msg
@info "Computing Δ..."
Δ = Laplacian(sett.S, sett.halfradius)
saveGRElem(filename(sett, ), Δ) saveGRElem(filename(sett, ), Δ)
Δ Δ
end end
λ, P = try function compute(sett, Δ)
sett.warmstart && error() @info "Computing λ and P..."
load(filename(sett, :solution), "λ", "P")
catch
λ, P = approximate_by_SOS(sett, Δ^2, Δ; λ, P = approximate_by_SOS(sett, Δ^2, Δ;
solverlog=filename(sett, :solverlog)) solverlog=filename(sett, :solverlog))
save(filename(sett, :solution), "λ", λ, "P", P) save(filename(sett, :solution), "λ", λ, "P", P)
λ < 0 && @warn "Solver did not produce a valid solution!" λ < 0 && @warn "Solver did not produce a valid solution!"
λ, P return λ, P
end
if sett.warmstart
λ, P = compute(sett, Δ)
else
λ, P =try
λ, P = load(filename(sett, :solution), "λ", "P")
@info "Loaded existing λ and P."
λ, P
catch ex
@warn ex.msg
compute(sett, Δ)
end
end end
info_strs = ["Numerical metrics of matrix solution:", info_strs = ["Numerical metrics of matrix solution:",
@ -307,7 +323,7 @@ function spectral_gap(sett::Settings)
@warn "The solution matrix doesn't seem to be positive definite!" @warn "The solution matrix doesn't seem to be positive definite!"
@time Q = real(sqrt(Symmetric( (P.+ P')./2 ))) @time Q = real(sqrt(Symmetric( (P.+ P')./2 )))
certified_sgap = spectral_gap(Δ, λ, Q, R=sett.radius) certified_sgap = spectral_gap(Δ, λ, Q, R=sett.halfradius)
return certified_sgap return certified_sgap
end end

26
src/1812.03456.jl Normal file
View File

@ -0,0 +1,26 @@
indexing(n) = [(i,j) for i in 1:n for j in 1:n if i≠j]
function generating_set(G::AutGroup{N}, n=N) where N
rmuls = [Groups.rmul_autsymbol(i,j) for (i,j) in indexing(n)]
lmuls = [Groups.lmul_autsymbol(i,j) for (i,j) in indexing(n)]
gen_set = G.([rmuls; lmuls])
return [gen_set; inv.(gen_set)]
end
function EltaryMat(M::MatAlgebra, i::Integer, j::Integer, val=1)
@assert i j
@assert 1 i nrows(M)
@assert 1 j ncols(M)
m = one(M)
m[i,j] = val
return m
end
function generating_set(M::MatAlgebra, n=nrows(M))
elts = [EltaryMat(M, i,j) for (i,j) in indexing(n)]
return elem_type(M)[elts; inv.(elts)]
end
include("sqadjop.jl")

View File

@ -13,15 +13,19 @@ using GroupRings
using JLD using JLD
using JuMP using JuMP
import AbstractAlgebra: Group, Ring, perm import AbstractAlgebra: Group, NCRing, perm
import MathProgBase.SolverInterface.AbstractMathProgSolver import MathProgBase.SolverInterface.AbstractMathProgSolver
AbstractAlgebra.one(G::Group) = G()
include("laplacians.jl") include("laplacians.jl")
include("RGprojections.jl") include("RGprojections.jl")
include("orbitdata.jl") include("orbitdata.jl")
include("sos_sdps.jl") include("sos_sdps.jl")
include("checksolution.jl") include("checksolution.jl")
include("1712.07167.jl") include("1712.07167.jl")
include("1812.03456.jl")
end # module Property(T) end # module Property(T)

View File

@ -70,7 +70,7 @@ end
function central_projection(RG::GroupRing, chi::AbstractCharacter, T::Type=Rational{Int}) function central_projection(RG::GroupRing, chi::AbstractCharacter, T::Type=Rational{Int})
result = RG(zeros(T, length(RG.basis))) result = RG(zeros(T, length(RG.basis)))
dim = chi(RG.group()) dim = chi(one(RG.group))
ord = Int(order(RG.group)) ord = Int(order(RG.group))
for g in RG.basis for g in RG.basis
@ -187,8 +187,8 @@ function rankOne_projections(RBn::GroupRing{G}, T::Type=Rational{Int}) where {G<
r = collect(1:N) r = collect(1:N)
for i in 1:N-1 for i in 1:N-1
first_emb = g->Bn(Generic.emb!(Bn.P(), g, view(r, 1:i))) first_emb = g->Bn(Generic.emb!(one(Bn.P), g, view(r, 1:i)))
last_emb = g->Bn(Generic.emb!(Bn.P(), g, view(r, (i+1):N))) last_emb = g->Bn(Generic.emb!(one(Bn.P), g, view(r, (i+1):N)))
Sk_first = (RBn(first_emb, p) for p in Sn_rankOnePr[i]) Sk_first = (RBn(first_emb, p) for p in Sn_rankOnePr[i])
Sk_last = (RBn(last_emb, p) for p in Sn_rankOnePr[N-i]) Sk_last = (RBn(last_emb, p) for p in Sn_rankOnePr[N-i])
@ -238,7 +238,7 @@ end
> The identity element `Id` and binary operation function `op` can be supplied > The identity element `Id` and binary operation function `op` can be supplied
> to e.g. take advantage of additive group structure. > to e.g. take advantage of additive group structure.
""" """
function generateGroup(gens::Vector{T}, r=2, Id::T=parent(first(gens))(), op=*) where {T<:GroupElem} function generateGroup(gens::Vector{T}, r=2, Id::T=one(parent(first(gens))), op=*) where {T<:GroupElem}
n = 0 n = 0
R = 1 R = 1
elts = gens elts = gens

View File

@ -4,16 +4,7 @@
# #
############################################################################### ###############################################################################
function spLaplacian(RG::GroupRing, S, T::Type=Float64) function spLaplacian(RG::GroupRing, S::AbstractVector, T::Type=Float64)
result = RG(T)
result[RG.group()] = T(length(S))
for s in S
result[s] -= one(T)
end
return result
end
function spLaplacian(RG::GroupRing, S::Vector{REl}, T::Type=Float64) where {REl<:AbstractAlgebra.ModuleElem}
result = RG(T) result = RG(T)
result[one(RG.group)] = T(length(S)) result[one(RG.group)] = T(length(S))
for s in S for s in S
@ -22,26 +13,17 @@ function spLaplacian(RG::GroupRing, S::Vector{REl}, T::Type=Float64) where {REl<
return result return result
end end
function Laplacian(S::Vector{E}, radius) where E<:AbstractAlgebra.ModuleElem function Laplacian(S::AbstractVector{REl}, halfradius) where REl<:Union{NCRingElem, GroupElem}
R = parent(first(S))
return Laplacian(S, one(R), radius)
end
function Laplacian(S::Vector{E}, radius) where E<:AbstractAlgebra.GroupElem
G = parent(first(S)) G = parent(first(S))
return Laplacian(S, G(), radius) @info "Generating metric ball of radius" radius=2halfradius
end @time E_R, sizes = Groups.generate_balls(S, one(G), radius=2halfradius)
function Laplacian(S, Id, radius)
@info "Generating metric ball of radius" radius=2radius
@time E_R, sizes = Groups.generate_balls(S, Id, radius=2radius)
@info "Generated balls:" sizes @info "Generated balls:" sizes
@info "Creating product matrix..." @info "Creating product matrix..."
rdict = GroupRings.reverse_dict(E_R) rdict = GroupRings.reverse_dict(E_R)
@time pm = GroupRings.create_pm(E_R, rdict, sizes[radius]; twisted=true) @time pm = GroupRings.create_pm(E_R, rdict, sizes[halfradius]; twisted=true)
RG = GroupRing(parent(Id), E_R, rdict, pm) RG = GroupRing(G, E_R, rdict, pm)
Δ = spLaplacian(RG, S) Δ = spLaplacian(RG, S)
return Δ return Δ
end end
@ -56,7 +38,7 @@ function loadGRElem(fname::String, RG::GroupRing)
return GroupRingElem(coeffs, RG) return GroupRingElem(coeffs, RG)
end end
function loadGRElem(fname::String, G::Group) function loadGRElem(fname::String, G::Union{Group, NCRing})
pm = load(fname, "pm") pm = load(fname, "pm")
RG = GroupRing(G, pm) RG = GroupRing(G, pm)
return loadGRElem(fname, RG) return loadGRElem(fname, RG)

View File

@ -28,7 +28,7 @@ function OrbitData(RG::GroupRing, autS::Group, verbose=true)
@time Uπs = [orthSVD(matrix_repr(p, mreps)) for p in autS_mps] @time Uπs = [orthSVD(matrix_repr(p, mreps)) for p in autS_mps]
multiplicities = size.(Uπs,2) multiplicities = size.(Uπs,2)
dimensions = [Int(p[autS()]*Int(order(autS))) for p in autS_mps] dimensions = [Int(p[one(autS)]*Int(order(autS))) for p in autS_mps]
if verbose if verbose
info_strs = ["", info_strs = ["",
lpad("multiplicities", 14) * " =" * join(lpad.(multiplicities, 4), ""), lpad("multiplicities", 14) * " =" * join(lpad.(multiplicities, 4), ""),
@ -213,12 +213,12 @@ function (g::perm)(y::GroupRingElem{T, <:SparseVector}) where T
return result return result
end end
function (p::perm)(A::MatElem) function (p::perm)(A::MatAlgElem)
length(p.d) == size(A, 1) == size(A,2) || throw("Can't act via $p on matrix of size $(size(A))") length(p.d) == size(A, 1) == size(A,2) || throw("Can't act via $p on matrix of size $(size(A))")
result = similar(A) result = similar(A)
@inbounds for i in 1:size(A, 1) @inbounds for i in 1:size(A, 1)
for j in 1:size(A, 2) for j in 1:size(A, 2)
result[i, j] = A[p[i], p[j]] # action by permuting rows and colums/conjugation result[p[i], p[j]] = A[i,j] # action by permuting rows and colums/conjugation
end end
end end
return result return result
@ -226,7 +226,7 @@ end
############################################################################### ###############################################################################
# #
# WreathProductElems action on Nemo.MatElem # WreathProductElems action on MatAlgElem
# #
############################################################################### ###############################################################################
@ -242,7 +242,7 @@ function (g::WreathProductElem)(y::GroupRingElem)
return result return result
end end
function (g::WreathProductElem{N})(A::MatElem) where N function (g::WreathProductElem{N})(A::MatAlgElem) where N
# @assert N == size(A,1) == size(A,2) # @assert N == size(A,1) == size(A,2)
flips = ntuple(i->(g.n[i].d[1]==1 && g.n[i].d[2]==2 ? 1 : -1), N) flips = ntuple(i->(g.n[i].d[1]==1 && g.n[i].d[2]==2 ? 1 : -1), N)
result = similar(A) result = similar(A)
@ -251,11 +251,11 @@ function (g::WreathProductElem{N})(A::MatElem) where N
@inbounds for i = 1:size(A,1) @inbounds for i = 1:size(A,1)
for j = 1:size(A,2) for j = 1:size(A,2)
x = A[g.p[i], g.p[j]] x = A[i, j]
if flips[i]*flips[j] == 1 if flips[i]*flips[j] == 1
result[i, j] = x result[g.p[i], g.p[j]] = x
else else
result[i, j] = -x result[g.p[i], g.p[j]] = -x
end end
# result[i, j] = AbstractAlgebra.mul!(x, x, flips[i]*flips[j]) # result[i, j] = AbstractAlgebra.mul!(x, x, flips[i]*flips[j])
# this mul! needs to be separately defined, but is 2x faster # this mul! needs to be separately defined, but is 2x faster
@ -273,8 +273,8 @@ end
function AutFG_emb(A::AutGroup, g::WreathProductElem) function AutFG_emb(A::AutGroup, g::WreathProductElem)
isa(A.objectGroup, FreeGroup) || throw("Not an Aut(Fₙ)") isa(A.objectGroup, FreeGroup) || throw("Not an Aut(Fₙ)")
parent(g).P.n == length(A.objectGroup.gens) || throw("No natural embedding of $(parent(g)) into $A") parent(g).P.n == length(A.objectGroup.gens) || throw("No natural embedding of $(parent(g)) into $A")
elt = A() elt = one(A)
Id = parent(g.n.elts[1])() Id = one(parent(g.n.elts[1]))
flips = Groups.AutSymbol[Groups.flip_autsymbol(i) for i in 1:length(g.p.d) if g.n.elts[i] != Id] flips = Groups.AutSymbol[Groups.flip_autsymbol(i) for i in 1:length(g.p.d) if g.n.elts[i] != Id]
Groups.r_multiply!(elt, flips, reduced=false) Groups.r_multiply!(elt, flips, reduced=false)
Groups.r_multiply!(elt, [Groups.perm_autsymbol(g.p)]) Groups.r_multiply!(elt, [Groups.perm_autsymbol(g.p)])

98
src/sqadjop.jl Normal file
View File

@ -0,0 +1,98 @@
isopposite(σ::perm, τ::perm, i=1, j=2) =
σ[i] τ[i] && σ[i] τ[j] &&
σ[j] τ[i] && σ[j] τ[j]
isadjacent(σ::perm, τ::perm, i=1, j=2) =
(σ[i] == τ[i] && σ[j] τ[j]) || # first equal, second differ
(σ[j] == τ[j] && σ[i] τ[i]) || # sedond equal, first differ
(σ[i] == τ[j] && σ[j] τ[i]) || # first σ equal to second τ
(σ[j] == τ[i] && σ[i] τ[j]) # second σ equal to first τ
Base.div(X::GroupRingElem, x::Number) = parent(X)(X.coeffsx)
function Sq(RG::GroupRing, N::Integer)
S₂ = generating_set(RG.group, 2)
= Int64
Δ₂ = length(S₂)*one(RG, ) - RG(S₂, );
Alt_N = [g for g in PermutationGroup(N) if parity(g) == 0]
sq = RG()
for σ in Alt_N
GroupRings.addeq!(sq, *(σ(Δ₂), σ(Δ₂), false))
end
return sq÷factorial(N-2)
end
function Adj(RG::GroupRing, N::Integer)
S₂ = generating_set(RG.group, 2)
= Int64
Δ₂ = length(S₂)*one(RG, ) - RG(S₂, );
Alt_N = [g for g in PermutationGroup(N) if parity(g) == 0]
Δ₂s = Dict(σ=>σ(Δ₂) for σ in Alt_N)
adj = RG()
for σ in Alt_N
for τ in Alt_N
if isadjacent(σ, τ)
GroupRings.addeq!(adj, *(Δ₂s[σ], Δ₂s[τ], false))
end
end
end
return adj÷factorial(N-2)^2
end
function Op(RG::GroupRing, N::Integer)
if N < 4
return RG()
end
S₂ = generating_set(RG.group, 2)
= Int64
Δ₂ = length(S₂)*one(RG, ) - RG(S₂, );
Alt_N = [g for g in PermutationGroup(N) if parity(g) == 0]
Δ₂s = Dict(σ=>σ(Δ₂) for σ in Alt_N)
op = RG()
for σ in Alt_N
for τ in Alt_N
if isopposite(σ, τ)
GroupRings.addeq!(op, *(Δ₂s[σ], Δ₂s[τ], false))
end
end
end
return op÷factorial(N-2)^2
end
for Elt in [:Sq, :Adj, :Op]
@eval begin
$Elt(RG::GroupRing{AutGroup{N}}) where N = $Elt(RG, N)
$Elt(RG::GroupRing{<:MatAlgebra}) = $Elt(RG, nrows(RG.group))
end
end
function SqAdjOp(RG::GroupRing, N::Integer)
S₂ = generating_set(RG.group, 2)
= Int64
Δ₂ = length(S₂)*one(RG, ) - RG(S₂, );
Alt_N = [σ for σ in PermutationGroup(N) if parity(σ) == 0]
sq, adj, op = RG(), RG(), RG()
Δ₂s = Dict(σ=>σ(Δ₂) for σ in Alt_N)
for σ in Alt_N
GroupRings.addeq!(sq, *(Δ₂s[σ], Δ₂s[σ], false))
for τ in Alt_N
if isopposite(σ, τ)
GroupRings.addeq!(op, *(Δ₂s[σ], Δ₂s[τ], false))
elseif isadjacent(σ, τ)
GroupRings.addeq!(adj, *(Δ₂s[σ], Δ₂s[τ], false))
end
end
end
k = factorial(N-2)
return sq÷k, adj÷k^2, op÷k^2
end

View File

@ -2,38 +2,50 @@
@testset "SL(2,Z)" begin @testset "SL(2,Z)" begin
N = 2 N = 2
G = MatrixSpace(Nemo.ZZ, N,N) G = MatrixAlgebra(zz, N)
S = Groups.gens(G) S = PropertyT.generating_set(G)
S = [S; inv.(S)]
rm("SL($N,Z)", recursive=true, force=true) rm("SL($N,Z)", recursive=true, force=true)
sett = PropertyT.Settings("SL($N,Z)", G, S, solver(20000, accel=20); upper_bound=0.1) sett = PropertyT.Settings("SL($N,Z)", G, S, with_SCS(20000, accel=20); upper_bound=0.1)
@test PropertyT.check_property_T(sett) == false PropertyT.print_summary(sett)
λ = PropertyT.spectral_gap(sett)
@test λ < 0.0
@test PropertyT.interpret_results(sett, λ) == false
end end
@testset "SL(3,Z)" begin @testset "SL(3,Z)" begin
N = 3 N = 3
G = MatrixSpace(Nemo.ZZ, N,N) G = MatrixAlgebra(zz, N)
S = Groups.gens(G) S = PropertyT.generating_set(G)
S = [S; inv.(S)]
rm("SL($N,Z)", recursive=true, force=true) rm("SL($N,Z)", recursive=true, force=true)
sett = PropertyT.Settings("SL($N,Z)", G, S, solver(1000, accel=20); upper_bound=0.1) sett = PropertyT.Settings("SL($N,Z)", G, S, with_SCS(1000, accel=20); upper_bound=0.1)
@test PropertyT.check_property_T(sett) == true PropertyT.print_summary(sett)
λ = PropertyT.spectral_gap(sett)
@test λ > 0.0999
@test PropertyT.interpret_results(sett, λ) == true
@test PropertyT.check_property_T(sett) == true #second run should be fast
end end
@testset "SAut(F₂)" begin @testset "SAut(F₂)" begin
N = 2 N = 2
G = SAut(FreeGroup(N)) G = SAut(FreeGroup(N))
S = Groups.gens(G) S = PropertyT.generating_set(G)
S = [S; inv.(S)]
rm("SAut(F$N)", recursive=true, force=true) rm("SAut(F$N)", recursive=true, force=true)
sett = PropertyT.Settings("SAut(F$N)", G, S, solver(20000); sett = PropertyT.Settings("SAut(F$N)", G, S, with_SCS(10000);
upper_bound=0.15, warmstart=false) upper_bound=0.15, warmstart=false)
@test PropertyT.check_property_T(sett) == false PropertyT.print_summary(sett)
λ = PropertyT.spectral_gap(sett)
@test λ < 0.0
@test PropertyT.interpret_results(sett, λ) == false
end end
end end

View File

@ -2,58 +2,97 @@
@testset "oSL(3,Z)" begin @testset "oSL(3,Z)" begin
N = 3 N = 3
G = MatrixSpace(Nemo.ZZ, N,N) G = MatrixAlgebra(zz, N)
S = Groups.gens(G) S = PropertyT.generating_set(G)
S = [S; inv.(S)]
autS = WreathProduct(PermGroup(2), PermGroup(N)) autS = WreathProduct(PermGroup(2), PermGroup(N))
rm("oSL($N,Z)", recursive=true, force=true)
sett = PropertyT.Settings("SL($N,Z)", G, S, autS, solver(2000, accel=20);
upper_bound=0.27, warmstart=false)
@test PropertyT.check_property_T(sett) == false
#second run just checks the solution
@test PropertyT.check_property_T(sett) == false
sett = PropertyT.Settings("SL($N,Z)", G, S, autS, solver(2000, accel=20); rm("oSL($N,Z)", recursive=true, force=true)
sett = PropertyT.Settings("SL($N,Z)", G, S, autS, with_SCS(2000, accel=20);
upper_bound=0.27, warmstart=false)
PropertyT.print_summary(sett)
λ = PropertyT.spectral_gap(sett)
@test λ < 0.0
@test PropertyT.interpret_results(sett, λ) == false
# second run just checks the solution due to warmstart=false above
@test λ == PropertyT.spectral_gap(sett)
@test PropertyT.check_property_T(sett) == false
sett = PropertyT.Settings("SL($N,Z)", G, S, autS, with_SCS(2000, accel=20);
upper_bound=0.27, warmstart=true) upper_bound=0.27, warmstart=true)
PropertyT.print_summary(sett)
λ = PropertyT.spectral_gap(sett)
@test λ > 0.269999
@test PropertyT.interpret_results(sett, λ) == true
# this should be very fast due to warmstarting:
@test λ PropertyT.spectral_gap(sett) atol=1e-5
@test PropertyT.check_property_T(sett) == true @test PropertyT.check_property_T(sett) == true
##########
# Symmetrizing by PermGroup(3):
sett = PropertyT.Settings("SL($N,Z)", G, S, PermGroup(N), with_SCS(4000, accel=20);
upper_bound=0.27, warmstart=true)
PropertyT.print_summary(sett)
λ = PropertyT.spectral_gap(sett)
@test λ > 0.269999
@test PropertyT.interpret_results(sett, λ) == true
end end
@testset "oSL(4,Z)" begin @testset "oSL(4,Z)" begin
N = 4 N = 4
G = MatrixSpace(Nemo.ZZ, N,N) G = MatrixAlgebra(zz, N)
S = Groups.gens(G) S = PropertyT.generating_set(G)
S = [S; inv.(S)]
autS = WreathProduct(PermGroup(2), PermGroup(N)) autS = WreathProduct(PermGroup(2), PermGroup(N))
rm("oSL($N,Z)", recursive=true, force=true)
sett = PropertyT.Settings("SL($N,Z)", G, S, autS, solver(2000, accel=20);
upper_bound=1.3, warmstart=false)
@test PropertyT.check_property_T(sett) == false
#second run just checks the obtained solution
@test PropertyT.check_property_T(sett) == false
sett = PropertyT.Settings("SL($N,Z)", G, S, autS, solver(5000, accel=20); rm("oSL($N,Z)", recursive=true, force=true)
sett = PropertyT.Settings("SL($N,Z)", G, S, autS, with_SCS(2000, accel=20);
upper_bound=1.3, warmstart=false)
PropertyT.print_summary(sett)
λ = PropertyT.spectral_gap(sett)
@test λ < 0.0
@test PropertyT.interpret_results(sett, λ) == false
# second run just checks the solution due to warmstart=false above
@test λ == PropertyT.spectral_gap(sett)
@test PropertyT.check_property_T(sett) == false
sett = PropertyT.Settings("SL($N,Z)", G, S, autS, with_SCS(5000, accel=20);
upper_bound=1.3, warmstart=true) upper_bound=1.3, warmstart=true)
PropertyT.print_summary(sett)
λ = PropertyT.spectral_gap(sett)
@test λ > 1.2999
@test PropertyT.interpret_results(sett, λ) == true
# this should be very fast due to warmstarting:
@test λ PropertyT.spectral_gap(sett) atol=1e-5
@test PropertyT.check_property_T(sett) == true @test PropertyT.check_property_T(sett) == true
end end
@testset "SAut(F₃)" begin @testset "SAut(F₃)" begin
N = 3 N = 3
G = SAut(FreeGroup(N)) G = SAut(FreeGroup(N))
S = Groups.gens(G) S = PropertyT.generating_set(G)
S = [S; inv.(S)]
autS = WreathProduct(PermGroup(2), PermGroup(N)) autS = WreathProduct(PermGroup(2), PermGroup(N))
rm("oSAut(F$N)", recursive=true, force=true) rm("oSAut(F$N)", recursive=true, force=true)
sett = PropertyT.Settings("SAut(F$N)", G, S, autS, solver(5000); sett = PropertyT.Settings("SAut(F$N)", G, S, autS, with_SCS(1000);
upper_bound=0.15, warmstart=false) upper_bound=0.15, warmstart=false)
PropertyT.print_summary(sett)
@test PropertyT.check_property_T(sett) == false @test PropertyT.check_property_T(sett) == false
end end
end end

245
test/1812.03456.jl Normal file
View File

@ -0,0 +1,245 @@
@testset "Sq, Adj, Op" begin
function isconstant_on_orbit(v, orb)
isempty(orb) && return true
k = v[first(orb)]
return all(v[o] == k for o in orb)
end
@testset "unit tests" begin
for N in [3,4]
M = MatrixAlgebra(zz, N)
@test PropertyT.EltaryMat(M, 1, 2) isa MatAlgElem
e12 = PropertyT.EltaryMat(M, 1, 2)
@test e12[1,2] == 1
@test inv(e12)[1,2] == -1
S = PropertyT.generating_set(M)
@test e12 S
@test length(PropertyT.generating_set(M)) == 2N*(N-1)
@test all(inv(s) S for s in S)
A = SAut(FreeGroup(N))
@test length(PropertyT.generating_set(A)) == 4N*(N-1)
S = PropertyT.generating_set(A)
@test all(inv(s) S for s in S)
end
@test PropertyT.isopposite(perm"(1,2,3)(4)", perm"(1,4,2)")
@test PropertyT.isadjacent(perm"(1,2,3)", perm"(1,2)(3)")
@test !PropertyT.isopposite(perm"(1,2,3)", perm"(1,2)(3)")
@test !PropertyT.isadjacent(perm"(1,4)", perm"(2,3)(4)")
@test isconstant_on_orbit([1,1,1,2,2], [2,3])
@test !isconstant_on_orbit([1,1,1,2,2], [2,3,4])
end
@testset "Sq, Adj, Op" begin
N = 4
M = MatrixAlgebra(zz, N)
S = PropertyT.generating_set(M)
Δ = PropertyT.Laplacian(S, 2)
RG = parent(Δ)
autS = WreathProduct(PermGroup(2), PermGroup(N))
orbits = PropertyT.orbit_decomposition(autS, RG.basis)
@test PropertyT.Sq(RG) isa GroupRingElem
sq = PropertyT.Sq(RG)
@test all(isconstant_on_orbit(sq, orb) for orb in orbits)
@test PropertyT.Adj(RG) isa GroupRingElem
adj = PropertyT.Adj(RG)
@test all(isconstant_on_orbit(adj, orb) for orb in orbits)
@test PropertyT.Op(RG) isa GroupRingElem
op = PropertyT.Op(RG)
@test all(isconstant_on_orbit(op, orb) for orb in orbits)
sq, adj, op = PropertyT.SqAdjOp(RG, N)
@test sq == PropertyT.Sq(RG)
@test adj == PropertyT.Adj(RG)
@test op == PropertyT.Op(RG)
e = one(M)
g = PropertyT.EltaryMat(M, 1,2)
h = PropertyT.EltaryMat(M, 1,3)
k = PropertyT.EltaryMat(M, 3,4)
edges = N*(N-1)÷2
@test sq[e] == 20*edges
@test sq[g] == sq[h] == -8
@test sq[g^2] == sq[h^2] == 1
@test sq[g*h] == sq[h*g] == 0
# @test adj[e] == ...
@test adj[g] == adj[h] # == ...
@test adj[g^2] == adj[h^2] == 0
@test adj[g*h] == adj[h*g] # == ...
# @test op[e] == ...
@test op[g] == op[h] # == ...
@test op[g^2] == op[h^2] == 0
@test op[g*h] == op[h*g] == 0
@test op[g*k] == op[k*g] # == ...
@test op[h*k] == op[k*h] == 0
end
end
@testset "1812.03456 examples" begin
function SOS_residual(x::GroupRingElem, Q::Matrix)
RG = parent(x)
@time sos = PropertyT.compute_SOS(RG, Q);
return x - sos
end
function check_positivity(elt, Δ, orbit_data, upper_bound, warm=nothing; with_solver=with_SCS(20_000, accel=10))
SDP_problem, varP = PropertyT.SOS_problem(elt, Δ, orbit_data; upper_bound=upper_bound)
status, warm = PropertyT.solve(SDP_problem, with_solver, warm);
Base.Libc.flush_cstdio()
@info "Optimization status:" status
λ = value(SDP_problem[])
Ps = [value.(P) for P in varP]
Qs = real.(sqrt.(Ps));
Q = PropertyT.reconstruct(Qs, orbit_data);
b = SOS_residual(elt - λ*Δ, Q)
return b, λ, warm
end
@testset "SL(3,Z)" begin
N = 3
halfradius = 2
M = MatrixAlgebra(zz, N)
S = PropertyT.generating_set(M)
Δ = PropertyT.Laplacian(S, halfradius)
RG = parent(Δ)
orbit_data = PropertyT.OrbitData(RG, WreathProduct(PermGroup(2), PermGroup(N)))
orbit_data = PropertyT.decimate(orbit_data);
@testset "Sq₃ is SOS" begin
elt = PropertyT.Sq(RG)
UB = 0.05 # 0.105?
residual, λ, _ = check_positivity(elt, Δ, orbit_data, UB)
Base.Libc.flush_cstdio()
@info "obtained λ and residual" λ norm(residual, 1)
@test 2^2*norm(residual, 1) < λ # i.e. we can certify positivity
@test 2^2*norm(residual, 1) < λ/100
end
@testset "Adj₃ is SOS" begin
elt = PropertyT.Adj(RG)
UB = 0.1 # 0.157?
residual, λ, _ = check_positivity(elt, Δ, orbit_data, UB)
Base.Libc.flush_cstdio()
@info "obtained λ and residual" λ norm(residual, 1)
@test 2^2*norm(residual, 1) < λ
@test 2^2*norm(residual, 1) < λ/100
end
@testset "Op₃ is empty, so can not be certified" begin
elt = PropertyT.Op(RG)
UB = Inf
residual, λ, _ = check_positivity(elt, Δ, orbit_data, UB)
Base.Libc.flush_cstdio()
@info "obtained λ and residual" λ norm(residual, 1)
@test 2^2*norm(residual, 1) > λ
end
end
@testset "SL(4,Z)" begin
N = 4
halfradius = 2
M = MatrixAlgebra(zz, N)
S = PropertyT.generating_set(M)
Δ = PropertyT.Laplacian(S, halfradius)
RG = parent(Δ)
orbit_data = PropertyT.OrbitData(RG, WreathProduct(PermGroup(2), PermGroup(N)))
orbit_data = PropertyT.decimate(orbit_data);
@testset "Sq₄ is SOS" begin
elt = PropertyT.Sq(RG)
UB = 0.2 # 0.3172
residual, λ, _ = check_positivity(elt, Δ, orbit_data, UB)
Base.Libc.flush_cstdio()
@info "obtained λ and residual" λ norm(residual, 1)
@test 2^2*norm(residual, 1) < λ # i.e. we can certify positivity
@test 2^2*norm(residual, 1) < λ/100
end
@testset "Adj₄ is SOS" begin
elt = PropertyT.Adj(RG)
UB = 0.3 # 0.5459?
residual, λ, _ = check_positivity(elt, Δ, orbit_data, UB)
@info "obtained λ and residual" λ norm(residual, 1)
@test 2^2*norm(residual, 1) < λ # i.e. we can certify positivity
@test 2^2*norm(residual, 1) < λ/100
end
@testset "we can't cerify that Op₄ SOS" begin
elt = PropertyT.Op(RG)
UB = 2.0
residual, λ, _ = check_positivity(elt, Δ, orbit_data, UB,
with_solver=with_SCS(20_000, accel=10, eps=2e-10))
Base.Libc.flush_cstdio()
@info "obtained λ and residual" λ norm(residual, 1)
@test 2^2*norm(residual, 1) > λ # i.e. we can certify positivity
end
@testset "Adj₄ + Op₄ is SOS" begin
elt = PropertyT.Adj(RG) + PropertyT.Op(RG)
UB = 0.6 # 0.82005
residual, λ, _ = check_positivity(elt, Δ, orbit_data, UB)
Base.Libc.flush_cstdio()
@info "obtained λ and residual" λ norm(residual, 1)
@test 2^2*norm(residual, 1) < λ # i.e. we can certify positivity
@test 2^2*norm(residual, 1) < λ/100
end
end
# @testset "Adj₄ + 100 Op₄ ∈ ISAut(F₄) is SOS" begin
# N = 4
# halfradius = 2
# M = SAut(FreeGroup(N))
# S = PropertyT.generating_set(M)
# Δ = PropertyT.Laplacian(S, halfradius)
# RG = parent(Δ)
# orbit_data = PropertyT.OrbitData(RG, WreathProduct(PermGroup(2), PermGroup(N)))
# orbit_data = PropertyT.decimate(orbit_data);
#
# @time elt = PropertyT.Adj(RG) + 100PropertyT.Op(RG)
# UB = 0.05
#
# warm = nothing
#
# residual, λ, warm = check_positivity(elt, Δ, orbit_data, UB, warm, with_solver=with_SCS(20_000, accel=10))
# @info "obtained λ and residual" λ norm(residual, 1)
#
# @test 2^2*norm(residual, 1) < λ # i.e. we can certify positivity
# @test 2^2*norm(residual, 1) < λ/100
# end
end

View File

@ -1,5 +1,3 @@
using PropertyT.GroupRings
@testset "Correctness of HPC SOS computation" begin @testset "Correctness of HPC SOS computation" begin
function prepare(G_name, λ, S_size) function prepare(G_name, λ, S_size)
@ -35,7 +33,7 @@ using PropertyT.GroupRings
@time sos_sqr = PropertyT.compute_SOS_square(pm, Q) @time sos_sqr = PropertyT.compute_SOS_square(pm, Q)
@time sos_hpc = PropertyT.compute_SOS(pm, Q) @time sos_hpc = PropertyT.compute_SOS(pm, Q)
@test norm(sos_sqr - sos_hpc, 1) < 3e-12 @test norm(sos_sqr - sos_hpc, 1) < 4e-12
@info "$NAME:\nDifference in l₁-norm between square and hpc sos decompositions:" norm(eoi-sos_sqr,1) norm(eoi-sos_hpc,1) norm(sos_sqr - sos_hpc, 1) @info "$NAME:\nDifference in l₁-norm between square and hpc sos decompositions:" norm(eoi-sos_sqr,1) norm(eoi-sos_hpc,1) norm(sos_sqr - sos_hpc, 1)
######################################################### #########################################################

104
test/actions.jl Normal file
View File

@ -0,0 +1,104 @@
@testset "actions on Group[Rings]" begin
Eij = PropertyT.EltaryMat
ssgs(M::MatAlgebra, i, j) = (S = [Eij(M, i, j), Eij(M, j, i)];
S = unique([S; inv.(S)]); S)
rmul = Groups.rmul_autsymbol
lmul = Groups.lmul_autsymbol
function ssgs(A::AutGroup, i, j)
rmuls = [rmul(i,j), rmul(j,i)]
lmuls = [lmul(i,j), lmul(j,i)]
gen_set = A.([rmuls; lmuls])
return unique([gen_set; inv.(gen_set)])
end
@testset "actions on SL(3,Z) and its group ring" begin
N = 3
halfradius = 2
M = MatrixAlgebra(zz, N)
S = PropertyT.generating_set(M)
E_R, sizes = Groups.generate_balls(S, one(M), radius=2halfradius);
rdict = GroupRings.reverse_dict(E_R)
pm = GroupRings.create_pm(E_R, rdict, sizes[halfradius]; twisted=false);
RG = GroupRing(M, E_R, rdict, pm)
@testset "correctness of actions" begin
Δ = length(S)*RG(1) - sum(RG(s) for s in S)
@test Δ == PropertyT.spLaplacian(RG, S)
elt = S[5]
x = RG(1) - RG(elt)
elt2 = E_R[rand(sizes[1]:sizes[2])]
y = 2RG(elt2) - RG(elt)
for G in [PermGroup(N), WreathProduct(PermGroup(2), PermGroup(N))]
@test all(g(one(M)) == one(M) for g in G)
@test all(rdict[g(m)] <= sizes[1] for g in G for m in S)
@test all(g(m)*g(n) == g(m*n) for g in G for m in S for n in S)
@test all(g(Δ) == Δ for g in G)
@test all(g(x) == RG(1) - RG(g(elt)) for g in G)
@test all(2RG(g(elt2)) - RG(g(elt)) == g(y) for g in G)
end
end
@testset "small Laplacians" begin
for (i,j) in PropertyT.indexing(N)
Sij = ssgs(M, i,j)
Δij= PropertyT.spLaplacian(RG, Sij)
@test all(p(Δij) == PropertyT.spLaplacian(RG, ssgs(M, p[i], p[j])) for p in PermGroup(N))
@test all(g(Δij) == PropertyT.spLaplacian(RG, ssgs(M, g.p[i], g.p[j])) for g in WreathProduct(PermGroup(2), PermGroup(N)))
end
end
end
@testset "actions on SAut(F_3) and its group ring" begin
N = 3
halfradius = 2
M = SAut(FreeGroup(N))
S = PropertyT.generating_set(M)
E_R, sizes = Groups.generate_balls(S, one(M), radius=2halfradius);
rdict = GroupRings.reverse_dict(E_R)
pm = GroupRings.create_pm(E_R, rdict, sizes[halfradius]; twisted=false);
RG = GroupRing(M, E_R, rdict, pm)
@testset "correctness of actions" begin
Δ = length(S)*RG(1) - sum(RG(s) for s in S)
@test Δ == PropertyT.spLaplacian(RG, S)
elt = S[5]
x = RG(1) - RG(elt)
elt2 = E_R[rand(sizes[1]:sizes[2])]
y = 2RG(elt2) - RG(elt)
for G in [PermGroup(N), WreathProduct(PermGroup(2), PermGroup(N))]
@test all(g(one(M)) == one(M) for g in G)
@test all(rdict[g(m)] <= sizes[1] for g in G for m in S)
@test all(g(m)*g(n) == g(m*n) for g in G for m in S for n in S)
@test all(g(Δ) == Δ for g in G)
@test all(g(x) == RG(1) - RG(g(elt)) for g in G)
@test all(2RG(g(elt2)) - RG(g(elt)) == g(y) for g in G)
end
end
for (i,j) in PropertyT.indexing(N)
Sij = ssgs(M, i,j)
Δij= PropertyT.spLaplacian(RG, Sij)
@test all(p(Δij) == PropertyT.spLaplacian(RG, ssgs(M, p[i], p[j])) for p in PermGroup(N))
@test all(g(Δij) == PropertyT.spLaplacian(RG, ssgs(M, g.p[i], g.p[j])) for g in WreathProduct(PermGroup(2), PermGroup(N)))
end
end
end

View File

@ -1,25 +1,18 @@
using AbstractAlgebra, Nemo, Groups, SCS
using SparseArrays
using JLD
using PropertyT
using Test using Test
using JuMP using LinearAlgebra, SparseArrays
using AbstractAlgebra, Groups, GroupRings
using PropertyT
using JLD
indexing(n) = [(i,j) for i in 1:n for j in (i+1):n] using JuMP, SCS
function Groups.gens(M::MatSpace)
@assert ncols(M) == nrows(M)
N = ncols(M)
E(i,j) = begin g = M(1); g[i,j] = 1; g end
S = [E(i,j) for (i,j) in indexing(N)]
S = [S; transpose.(S)]
return S
end
solver(iters; accel=1) = with_SCS(iters; accel=1, eps=1e-10) =
with_optimizer(SCS.Optimizer, with_optimizer(SCS.Optimizer,
linear_solver=SCS.Direct, max_iters=iters, linear_solver=SCS.Direct, max_iters=iters,
acceleration_lookback=accel, eps=1e-10, warm_start=true) acceleration_lookback=accel, eps=eps, warm_start=true)
include("1703.09680.jl") include("1703.09680.jl")
include("actions.jl")
include("1712.07167.jl") include("1712.07167.jl")
include("SOS_correctness.jl") include("SOS_correctness.jl")
include("1812.03456.jl")