diff --git a/src/CheckSolution.jl b/src/CheckSolution.jl index b80756f..0a7e32e 100644 --- a/src/CheckSolution.jl +++ b/src/CheckSolution.jl @@ -3,8 +3,7 @@ import Base: rationalize using IntervalArithmetic IntervalArithmetic.setrounding(Interval, :tight) -IntervalArithmetic.setformat(sigfigs=10) -IntervalArithmetic.setprecision(Interval, 53) # slightly faster than 256 +IntervalArithmetic.setformat(sigfigs=12) import IntervalArithmetic.± @@ -15,131 +14,97 @@ end (±)(X::GroupRingElem, tol::Real) = GroupRingElem(X.coeffs ± tol, parent(X)) -function Base.rationalize{T<:Integer, S<:Real}(::Type{T}, - X::AbstractArray{S}; tol::Real=eps(eltype(X))) - r(x) = rationalize(T, x, tol=tol) - return r.(X) -end - -ℚ(x, tol::Real) = rationalize(BigInt, x, tol=tol) - EOI{T<:Number}(Δ::GroupRingElem{T}, λ::T) = Δ*Δ - λ*Δ function groupring_square(vect::AbstractVector, l, pm) zzz = zeros(eltype(vect), l) - zzz[1:length(vect)] .= vect - return GroupRings.mul!(similar(zzz), zzz, zzz, pm) + return GroupRings.mul!(zzz, vect, vect, pm) end -function compute_SOS(sqrt_matrix, elt::GroupRingElem) - n = size(sqrt_matrix,2) - l = length(elt.coeffs) - pm = parent(elt).pm +function compute_SOS(Q::AbstractArray, pm::Array{Int,2}, l::Int) - result = zeros(eltype(sqrt_matrix), l) - for i in 1:n - result .+= groupring_square(view(sqrt_matrix,:,i), l, pm) - end - - # @everywhere groupring_square = PropertyT.groupring_square - # - # result = @parallel (+) for i in 1:n - # groupring_square(view(sqrt_matrix,:,i), length(elt.coeffs), parent(elt).pm) + # result = zeros(eltype(Q), l) + # r = similar(result) + # for i in 1:size(Q,2) + # print(" $i") + # result += GroupRings.mul!(r, view(Q,:,i), view(Q,:,i), pm) # end - return GroupRingElem(result, parent(elt)) + @everywhere groupring_square = PropertyT.groupring_square + + result = @parallel (+) for i in 1:size(Q,2) + groupring_square(Q[:,i], l, pm) + end + + println("") + + return result end -function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2}) - l = size(sqrt_matrix, 2) - sqrt_corrected = Array{Interval{Float64}}(l,l) +function compute_SOS(Q::AbstractArray, RG::GroupRing, l::Int) + result = compute_SOS(Q, RG.pm, l) + return GroupRingElem(result, RG) +end + +function distance_to_cone{T<:Interval}(elt::GroupRingElem, Q::AbstractArray{T,2}, wlen::Int) + SOS = compute_SOS(Q, parent(elt), length(elt.coeffs)) + SOS_diff = elt - SOS + + ɛ_dist = GroupRings.augmentation(SOS_diff) + info(logger, "ɛ(∑ξᵢ*ξᵢ) ∈ $(ɛ_dist)") + + eoi_SOS_L1_dist = norm(SOS_diff,1) + info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(eoi_SOS_L1_dist)") + + dist = 2^(wlen-1)*eoi_SOS_L1_dist + return dist +end + +function distance_to_cone{T}(elt::GroupRingElem, Q::AbstractArray{T,2}, wlen::Int) + SOS = compute_SOS(Q, parent(elt), length(elt.coeffs)) + SOS_diff = elt - SOS + + ɛ_dist = GroupRings.augmentation(SOS_diff) + info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ≈ $(@sprintf("%.10f", ɛ_dist))") + + eoi_SOS_L1_dist = norm(SOS_diff,1) + info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", eoi_SOS_L1_dist))") + + dist = 2^(wlen-1)*eoi_SOS_L1_dist + return dist +end + +function augIdproj{T, I<:AbstractInterval}(S::Type{I}, Q::AbstractArray{T,2}) + l = size(Q, 2) + R = zeros(S, (l,l)) Threads.@threads for j in 1:l - col = sum(view(sqrt_matrix, :,j))//l + col = sum(view(Q, :,j))/l for i in 1:l - sqrt_corrected[i,j] = (Float64(sqrt_matrix[i,j]) - Float64(col)) ± eps(0.0) + R[i,j] = Q[i,j] - col ± eps(0.0) end end - return sqrt_corrected + return R end -function distance_to_cone{T<:Rational}(λ::T, sqrt_matrix::Array{T,2}, Δ::GroupRingElem{T}, wlen) - SOS = compute_SOS(sqrt_matrix, Δ) - - SOS_diff = EOI(Δ, λ) - SOS - eoi_SOS_L1_dist = norm(SOS_diff,1) - - info(logger, "λ = $λ (≈$(@sprintf("%.10f", float(λ)))") - ɛ_dist = GroupRings.augmentation(SOS_diff) - if ɛ_dist ≠ 0//1 - warn(logger, "The SOS is not in the augmentation ideal, numbers below are meaningless!") - end - info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) = $ɛ_dist") - info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ = $(@sprintf("%.10f", float(eoi_SOS_L1_dist)))") - - distance_to_cone = λ - 2^(wlen-1)*eoi_SOS_L1_dist - return distance_to_cone -end - -function distance_to_cone{T<:Rational, S<:Interval}(λ::T, sqrt_matrix::AbstractArray{S,2}, Δ::GroupRingElem{T}, wlen) - SOS = compute_SOS(sqrt_matrix, Δ) - info(logger, "ɛ(∑ξᵢ*ξᵢ) ∈ $(GroupRings.augmentation(SOS))") - λ_int = @interval(λ) - Δ_int = GroupRingElem([@interval(c) for c in Δ.coeffs], parent(Δ)) - SOS_diff = EOI(Δ_int, λ_int) - SOS - eoi_SOS_L1_dist = norm(SOS_diff,1) - - info(logger, "λ = $λ (≈≥$(@sprintf("%.10f",float(λ))))") - ɛ_dist = GroupRings.augmentation(SOS_diff) - - info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ∈ $(ɛ_dist)") - info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(eoi_SOS_L1_dist)") - - distance_to_cone = λ - 2^(wlen-1)*eoi_SOS_L1_dist - return distance_to_cone -end - -function distance_to_cone(λ, sqrt_matrix::AbstractArray, Δ::GroupRingElem, wlen) - SOS = compute_SOS(sqrt_matrix, Δ) - - SOS_diff = EOI(Δ, λ) - SOS - eoi_SOS_L1_dist = norm(SOS_diff,1) - - info(logger, "λ = $λ") - ɛ_dist = GroupRings.augmentation(SOS_diff) - info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ≈ $(@sprintf("%.10f", ɛ_dist))") - info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", eoi_SOS_L1_dist))") - - distance_to_cone = λ - 2^(wlen-1)*eoi_SOS_L1_dist - return distance_to_cone -end - -function rationalize_and_project{T}(Q::AbstractArray{T}, δ::T, logger) - info(logger, "") - info(logger, "Rationalizing with accuracy $δ") - t = @timed Q_ℚ = ℚ(Q, δ) - info(logger, timed_msg(t)) - - info(logger, "Projecting columns of the rationalized Q to the augmentation ideal...") - t = @timed Q_int = correct_to_augmentation_ideal(Q_ℚ) - info(logger, timed_msg(t)) +function augIdproj{T}(Q::AbstractArray{T,2}, logger) + info(logger, "Projecting columns of Q to the augmentation ideal...") + @logtime logger Q = augIdproj(Interval{T}, Q) info(logger, "Checking that sum of every column contains 0.0... ") - check = all([0.0 in sum(view(Q_int, :, i)) for i in 1:size(Q_int, 2)]) + check = all([0.0 in sum(view(Q, :, i)) for i in 1:size(Q, 2)]) info(logger, (check? "They do." : "FAILED!")) @assert check - return Q_int + return Q end -function check_distance_to_positive_cone(Δ::GroupRingElem, λ, Q, wlen; - tol=1e-14, rational=false) - +function distance_to_positive_cone(Δ::GroupRingElem, λ, Q, wlen::Int) info(logger, "------------------------------------------------------------") - info(logger, "") + info(logger, "λ = $λ") info(logger, "Checking in floating-point arithmetic...") - t = @timed fp_distance = distance_to_cone(λ, Q, Δ, wlen) - info(logger, timed_msg(t)) + Δ²_λΔ = EOI(Δ, λ) + @logtime logger fp_distance = λ - distance_to_cone(Δ²_λΔ, Q, wlen) info(logger, "Floating point distance (to positive cone) ≈ $(@sprintf("%.10f", fp_distance))") info(logger, "------------------------------------------------------------") @@ -148,26 +113,16 @@ function check_distance_to_positive_cone(Δ::GroupRingElem, λ, Q, wlen; end info(logger, "") - Q_ℚω_int = rationalize_and_project(Q, tol, logger) - λ_ℚ = ℚ(λ, tol) - Δ_ℚ = ℚ(Δ, tol) + Q = augIdproj(Q, logger) info(logger, "Checking in interval arithmetic") + λ = @interval(λ) + Δ = GroupRingElem([@interval(c) for c in Δ.coeffs], parent(Δ)) + Δ²_λΔ = EOI(Δ, λ) - t = @timed Interval_dist_to_ΣSq = distance_to_cone(λ_ℚ, Q_ℚω_int, Δ_ℚ, wlen) - info(logger, timed_msg(t)) + @logtime logger Interval_dist_to_ΣSq = λ - distance_to_cone(Δ²_λΔ, Q, wlen) info(logger, "The Augmentation-projected actual distance (to positive cone) ∈ $(Interval_dist_to_ΣSq)") info(logger, "------------------------------------------------------------") - if Interval_dist_to_ΣSq.lo ≤ 0 || !rational - return Interval_dist_to_ΣSq - else - info(logger, "Checking Projected SOS decomposition in exact rational arithmetic...") - t = @timed ℚ_dist_to_ΣSq = distance_to_cone(λ_ℚ, Q_ℚω, Δ_ℚ, wlen) - info(logger, timed_msg(t)) - @assert isa(ℚ_dist_to_ΣSq, Rational) - info(logger, "Augmentation-projected rational distance (to positive cone) ≥ $(Float64(trunc(ℚ_dist_to_ΣSq,8)))") - info(logger, "------------------------------------------------------------") - return ℚ_dist_to_ΣSq - end + return Interval_dist_to_ΣSq end diff --git a/src/Orbit-wise.jl b/src/Orbit-wise.jl index fca5438..d77e556 100644 --- a/src/Orbit-wise.jl +++ b/src/Orbit-wise.jl @@ -8,44 +8,50 @@ immutable Settings N::Int G::Group S::Vector - AutS::Group + autS::Group radius::Int solver::SCSSolver upper_bound::Float64 tol::Float64 end -immutable OrbitData +prefix(s::Settings) = s.name +suffix(s::Settings) = "$(s.upper_bound)" +prepath(s::Settings) = prefix(s) +fullpath(s::Settings) = joinpath(prefix(s), suffix(s)) + +immutable OrbitData{T<:AbstractArray{Float64, 2}, LapType <:AbstractVector{Float64}} name::String - Us::Vector + Us::Vector{T} Ps::Vector{Array{JuMP.Variable,2}} - cnstr::Vector - laplacian::Vector - laplacianSq::Vector + cnstr::Vector{SparseMatrixCSC{Float64, Int}} + laplacian::LapType + laplacianSq::LapType dims::Vector{Int} end -function OrbitData(name::String) - splap = load(joinpath(name, "delta.jld"), "Δ"); - pm = load(joinpath(name, "pm.jld"), "pm"); - cnstr = PropertyT.constraints_from_pm(pm); +function OrbitData(sett::Settings) + splap = load(joinpath(prepath(sett), "delta.jld"), "Δ"); + pm = load(joinpath(prepath(sett), "pm.jld"), "pm"); + cnstr = PropertyT.constraints(pm); splap² = similar(splap) splap² = GroupRings.mul!(splap², splap, splap, pm); # Uπs = load(joinpath(name, "U_pis.jld"), "Uπs"); - Uπs = load(joinpath(name, "U_pis.jld"), "spUπs"); + Uπs = load(joinpath(prepath(sett), "U_pis.jld"), "Uπs") + Uπs = sparsify!.(Uπs, sett.tol, check=true, verbose=true) #dimensions of the corresponding πs: - dims = load(joinpath(name, "U_pis.jld"), "dims") + dims = load(joinpath(prepath(sett), "U_pis.jld"), "dims") - m, P = init_model(Uπs); + m, P = init_model(size(Uπs,1), [size(U,2) for U in Uπs]); - orbits = load(joinpath(name, "orbits.jld"), "orbits"); + orbits = load(joinpath(prepath(sett), "orbits.jld"), "orbits"); n = size(Uπs[1],1) orb_spcnstrm = [orbit_constraint(cnstr[collect(orb)], n) for orb in orbits] orb_splap = orbit_spvector(splap, orbits) orb_splap² = orbit_spvector(splap², orbits) - orbData = OrbitData(name, Uπs, P, orb_spcnstrm, orb_splap, orb_splap², dims); + orbData = OrbitData(fullpath(sett), Uπs, P, orb_spcnstrm, orb_splap, orb_splap², dims); # orbData = OrbitData(name, Uπs, P, orb_spcnstrm, splap, splap², dims); @@ -89,19 +95,19 @@ function sparsify!{T}(M::AbstractArray{T}, eps=eps(T); check=false, verbose=fals info(logger, "Sparsified density:", rpad(densM, 20), " → ", rpad(dens(M),20)) end - return M + return sparse(M) end -sparsify{T}(U::AbstractArray{T}, tol=eps(T)) = sparsify!(deepcopy(U), tol) +sparsify{T}(U::AbstractArray{T}, tol=eps(T); check=true, verbose=false) = sparsify!(deepcopy(U), tol, check=check, verbose=verbose) function init_orbit_data(logger, sett::Settings; radius=2) - ex(fname) = isfile(joinpath(sett.name, fname)) + ex(fname) = isfile(joinpath(prepath(sett), fname)) - files_exists = ex.(["delta.jld", "pm.jld", "U_pis.jld", "orbits.jld"]) + files_exists = ex.(["delta.jld", "pm.jld", "U_pis.jld", "orbits.jld", "preps.jld"]) if !all(files_exists) - compute_orbit_data(logger, sett.name, sett.G, sett.S, sett.AutS, radius=radius) + compute_orbit_data(logger, prepath(sett), sett.G, sett.S, sett.autS, radius=radius) end return 0 @@ -118,9 +124,9 @@ end A(data::OrbitData, π, t) = data.dims[π].*transform(data.Us[π], data.cnstr[t]) function constrLHS(m::JuMP.Model, data::OrbitData, t) - l = endof(data.Us) - lhs = @expression(m, sum(vecdot(A(data, π, t), data.Ps[π]) for π in 1:l)) - return lhs + l = endof(data.Us) + lhs = @expression(m, sum(vecdot(A(data, π, t), data.Ps[π]) for π in 1:l)) + return lhs end function constrLHS(m::JuMP.Model, cnstr, Us, Ust, dims, vars, eps=100*eps(1.0)) @@ -154,36 +160,32 @@ function addconstraints!(m::JuMP.Model, data::OrbitData, l::Int=length(data.lapl println("") end -function init_model(Uπs) - m = JuMP.Model(); - l = size(Uπs,1) - P = Vector{Array{JuMP.Variable,2}}(l) +function init_model(n, sizes) + m = JuMP.Model(); + P = Vector{Array{JuMP.Variable,2}}(n) - for k in 1:l - s = size(Uπs[k],2) - P[k] = JuMP.@variable(m, [i=1:s, j=1:s]) - JuMP.@SDconstraint(m, P[k] >= 0.0) - end + for (k,s) in enumerate(sizes) + P[k] = JuMP.@variable(m, [i=1:s, j=1:s]) + JuMP.@SDconstraint(m, P[k] >= 0.0) + end - JuMP.@variable(m, λ >= 0.0) - JuMP.@objective(m, Max, λ) - return m, P + JuMP.@variable(m, λ >= 0.0) + JuMP.@objective(m, Max, λ) + return m, P end -function create_SDP_problem(name::String; upper_bound=Inf) +function create_SDP_problem(sett::Settings) info(logger, "Loading orbit data....") - t = @timed SDP_problem, orb_data = OrbitData(name); - info(logger, PropertyT.timed_msg(t)) + @logtime logger SDP_problem, orb_data = OrbitData(sett); - if upper_bound < Inf + if sett.upper_bound < Inf λ = JuMP.getvariable(SDP_problem, :λ) - JuMP.@constraint(SDP_problem, λ <= upper_bound) + JuMP.@constraint(SDP_problem, λ <= sett.upper_bound) end t = length(orb_data.laplacian) info(logger, "Adding $t constraints ... ") - t = @timed addconstraints!(SDP_problem, orb_data) - info(logger, PropertyT.timed_msg(t)) + @logtime logger addconstraints!(SDP_problem, orb_data) return SDP_problem, orb_data end @@ -201,28 +203,36 @@ function λandP(m::JuMP.Model, data::OrbitData, sett::Settings) info(logger, "Reconstructing P...") - t = @timed preps = perm_reps(sett.G, sett.S, sett.AutS, sett.radius) - info(logger, PropertyT.timed_msg(t)) + preps = load_preps(joinpath(prepath(sett), "preps.jld"), sett.autS) - t = @timed recP = reconstruct_sol(preps, data.Us, Ps, data.dims) - info(logger, PropertyT.timed_msg(t)) + @logtime logger recP = reconstruct_sol(preps, data.Us, Ps, data.dims) - fname = PropertyT.λSDPfilenames(data.name)[2] + fname = PropertyT.λSDPfilenames(fullpath(sett))[2] save(fname, "origP", Ps, "P", recP) return λ, recP end +function load_preps(fname::String, G::Nemo.Group) + lded_preps = load(fname, "perms_d") + permG = PermutationGroup(length(first(lded_preps))) + @assert length(lded_preps) == order(G) + return Dict(k=>permG(v) for (k,v) in zip(elements(G), lded_preps)) +end + +function save_preps(fname::String, preps) + autS = parent(first(keys(preps))) + JLD.save(fname, "perms_d", [preps[elt].d for elt in elements(autS)]) +end + function check_property_T(sett::Settings) init_orbit_data(logger, sett, radius=sett.radius) - fnames = PropertyT.λSDPfilenames(sett.name) - - if all(isfile.(fnames)) - λ, P = PropertyT.λandP(sett.name) + if all(isfile.(λSDPfilenames(fullpath(sett)))) + λ, P = PropertyT.λandP(fullpath(sett)) else info(logger, "Creating SDP problem...") - SDP_problem, orb_data = create_SDP_problem(sett.name, upper_bound=sett.upper_bound) + SDP_problem, orb_data = create_SDP_problem(sett) JuMP.setsolver(SDP_problem, sett.solver) λ, P = λandP(SDP_problem, orb_data, sett) @@ -234,17 +244,16 @@ function check_property_T(sett::Settings) info(logger, "minimum(P) = $(minimum(P))") if λ > 0 - pm_fname = joinpath(sett.name, "pm.jld") + pm_fname, Δ_fname = pmΔfilenames(prepath(sett)) RG = GroupRing(sett.G, load(pm_fname, "pm")) - Δ_fname = joinpath(sett.name, "delta.jld") Δ = GroupRingElem(load(Δ_fname, "Δ")[:, 1], RG) isapprox(eigvals(P), abs.(eigvals(P)), atol=sett.tol) || - warn("The solution matrix doesn't seem to be positive definite!") + warn("The solution matrix doesn't seem to be positive definite!") # @assert P == Symmetric(P) - Q = real(sqrtm(Symmetric(P))) + @logtime logger Q = real(sqrtm(Symmetric(P))) - sgap = PropertyT.check_distance_to_positive_cone(Δ, λ, Q, 2*sett.radius, tol=sett.tol, rational=false) + sgap = distance_to_positive_cone(Δ, λ, Q, 2*sett.radius) if isa(sgap, Interval) sgap = sgap.lo end diff --git a/src/OrbitDecomposition.jl b/src/OrbitDecomposition.jl index 91fa680..3e8797d 100644 --- a/src/OrbitDecomposition.jl +++ b/src/OrbitDecomposition.jl @@ -10,7 +10,7 @@ mutable struct FFEltsIter{T<:Generic.FinField} all::Int field::T - function FFEltsIter{T}(F::T) where {T} + function FFEltsIter{T}(F::T) where {T} return new(Int(characteristic(F)^degree(F)), F) end end @@ -79,89 +79,61 @@ function orbit_spvector(vect::AbstractVector, orbits) return orb_vector end -function orbit_constraint(constraints::Vector{Vector{Vector{Int64}}}, n) +function orbit_constraint(constraints::Vector{Vector{Tuple{Int,Int}}}, n) result = spzeros(n,n) for cnstr in constraints for p in cnstr - result[p[2], p[1]] += 1.0 + result[p[2], p[1]] += 1.0/length(constraints) end end - return 1/length(constraints)*result + return result end ############################################################################### # -# Matrix- and C*-representations +# Matrix-, Permutation- and C*-representations # ############################################################################### -function matrix_repr(g::GroupElem, E, E_dict) - rep_matrix = spzeros(Int, length(E), length(E)) +function matrix_repr(p::perm) + N = parent(p).n + return sparse(1:N, p.d, [1.0 for _ in 1:N]) +end + +function matrix_reps{T<:GroupElem}(preps::Dict{T,perm}) + kk = collect(keys(preps)) + mreps = Vector{SparseMatrixCSC{Float64, Int}}(length(kk)) + Threads.@threads for i in 1:length(kk) + mreps[i] = matrix_repr(preps[kk[i]]) + end + return Dict(kk[i] => mreps[i] for i in 1:length(kk)) +end + +function perm_repr(g::GroupElem, E::Vector, E_dict) + p = Vector{Int}(length(E)) for (i,elt) in enumerate(E) - j = E_dict[g(elt)] - rep_matrix[i,j] = 1 + p[i] = E_dict[g(elt)] end - return rep_matrix + return p end -function matrix_reps{T<:GroupElem}(G::Group, S::Vector{T}, AutS::Group, radius::Int) - Id = (isa(G, Nemo.Ring) ? one(G) : G()) - E2, _ = Groups.generate_balls(S, Id, radius=radius) - Edict = GroupRings.reverse_dict(E2) - - elts = collect(elements(AutS)) - l = length(elts) - mreps = Vector{SparseMatrixCSC{Int, Int}}(l) - - Threads.@threads for i in 1:l - mreps[i] = PropertyT.matrix_repr(elts[i], E2, Edict) - end - - mreps_dict = Dict(elts[i]=>mreps[i] for i in 1:l) - - return mreps_dict -end - -function matrix_reps(G::Group, E2, E_dict) +function perm_reps(G::Group, E::Vector, E_rdict=GroupRings.reverse_dict(E)) elts = collect(elements(G)) l = length(elts) - mreps = Vector{SparseMatrixCSC{Int, Int}}(l) - - Threads.@threads for i in 1:l - mreps[i] = matrix_repr(elts[i], E2, E_dict) - end - - return Dict(elts[i]=>mreps[i] for i in 1:l) -end - -function perm_reps{T<:GroupElem}(G::Group, S::Vector{T}, AutS::Group, radius::Int) - Id = (isa(G, Nemo.Ring) ? one(G) : G()) - E_R, _ = Groups.generate_balls(S, Id, radius=radius) - Edict = GroupRings.reverse_dict(E_R) - - elts = collect(elements(AutS)) - l = length(elts) preps = Vector{Generic.perm}(l) - G = Nemo.PermutationGroup(length(E_R)) + permG = Nemo.PermutationGroup(length(E)) Threads.@threads for i in 1:l - preps[i] = G(perm_repr(elts[i], E_R, Edict)) + preps[i] = permG(PropertyT.perm_repr(elts[i], E, E_rdict)) end - preps_dict = Dict(elts[i]=>preps[i] for i in 1:l) - - return preps_dict + return Dict(elts[i]=>preps[i] for i in 1:l) end -function perm_repr(g::GroupElem, E, E_dict) - l = length(E) - p = Vector{Int}(l) - for (i,elt) in enumerate(E) - j = E_dict[g(elt)] - p[i] = j - end - return p +function perm_reps(S::Vector, autS::Group, radius::Int) + E, _ = Groups.generate_balls(S, radius=radius) + return perm_reps(autS, E) end function reconstruct_sol{T<:GroupElem}(preps::Dict{T, Generic.perm}, @@ -189,22 +161,17 @@ function reconstruct_sol{T<:GroupElem}(preps::Dict{T, Generic.perm}, end function Cstar_repr(x::GroupRingElem{T}, mreps::Dict) where {T} - nzindx = [i for i in eachindex(x.coeffs) if x[i] != zero(T)] - RG = parent(x) - res = sum(Float64(x[i]).*mreps[RG.basis[i]] for i in nzindx) - - return res + return sum(x[i].*mreps[parent(x).basis[i]] for i in findn(x.coeffs)) end -function orthSVD(M::AbstractMatrix) - M = full(M) - fact = svdfact(M) - singv = fact[:S] - M_rank = sum(singv .> maximum(size(M))*eps(eltype(singv))) - return fact[:U][:,1:M_rank] +function orthSVD{T}(M::AbstractMatrix{T}) + M = full(M) + fact = svdfact(M) + M_rank = sum(fact[:S] .> maximum(size(M))*eps(T)) + return fact[:U][:,1:M_rank] end -function compute_orbit_data{T<:GroupElem}(logger, name::String, G::Nemo.Group, S::Vector{T}, AutS; radius=2) +function compute_orbit_data{T<:GroupElem}(logger, name::String, G::Nemo.Group, S::Vector{T}, autS::Nemo.Group; radius=2) isdir(name) || mkdir(name) info(logger, "Generating ball of radius $(2*radius)") @@ -212,44 +179,46 @@ function compute_orbit_data{T<:GroupElem}(logger, name::String, G::Nemo.Group, S # TODO: Fix that by multiple dispatch? Id = (isa(G, Nemo.Ring) ? one(G) : G()) - @time E4, sizes = Groups.generate_balls(S, Id, radius=2*radius); + @logtime logger E_2R, sizes = Groups.generate_balls(S, Id, radius=2*radius); info(logger, "Balls of sizes $sizes.") info(logger, "Reverse dict") - @time E_dict = GroupRings.reverse_dict(E4) + @logtime logger E_rdict = GroupRings.reverse_dict(E_2R) info(logger, "Product matrix") - @time pm = GroupRings.create_pm(E4, E_dict, sizes[radius], twisted=true) - RG = GroupRing(G, E4, E_dict, pm) + @logtime logger pm = GroupRings.create_pm(E_2R, E_rdict, sizes[radius], twisted=true) + RG = GroupRing(G, E_2R, E_rdict, pm) Δ = PropertyT.splaplacian(RG, S) @assert GroupRings.augmentation(Δ) == 0 save(joinpath(name, "delta.jld"), "Δ", Δ.coeffs) save(joinpath(name, "pm.jld"), "pm", pm) - info(logger, "Decomposing E into orbits of $(AutS)") - @time orbs = orbit_decomposition(AutS, E4, E_dict) - @assert sum(length(o) for o in orbs) == length(E4) + info(logger, "Decomposing E into orbits of $(autS)") + @logtime logger orbs = orbit_decomposition(autS, E_2R, E_rdict) + @assert sum(length(o) for o in orbs) == length(E_2R) + info(logger, "E consists of $(length(orbs)) orbits!") save(joinpath(name, "orbits.jld"), "orbits", orbs) info(logger, "Action matrices") - @time AutS_mreps = matrix_reps(AutS, E4[1:sizes[radius]], E_dict) + @logtime logger reps = perm_reps(autS, E_2R[1:sizes[radius]], E_rdict) + save_preps(joinpath(name, "preps.jld"), reps) + reps = matrix_reps(reps) info(logger, "Projections") - @time AutS_mps = rankOne_projections(AutS); + @logtime logger autS_mps = rankOne_projections(autS); - @time π_E_projections = [Cstar_repr(p, AutS_mreps) for p in AutS_mps] + @logtime logger π_E_projections = [Cstar_repr(p, reps) for p in autS_mps] info(logger, "Uπs...") - @time Uπs = orthSVD.(π_E_projections) + @logtime logger Uπs = orthSVD.(π_E_projections) multiplicities = size.(Uπs,2) info(logger, "multiplicities = $multiplicities") - dimensions = [Int(p[AutS()]*Int(order(AutS))) for p in AutS_mps]; + dimensions = [Int(p[autS()]*Int(order(autS))) for p in autS_mps]; info(logger, "dimensions = $dimensions") @assert dot(multiplicities, dimensions) == sizes[radius] save(joinpath(name, "U_pis.jld"), "Uπs", Uπs, - "spUπs", sparsify!.(deepcopy(Uπs), check=true, verbose=true), "dims", dimensions) return 0 end diff --git a/src/Projections.jl b/src/Projections.jl index 2c1d01f..7f60d66 100644 --- a/src/Projections.jl +++ b/src/Projections.jl @@ -4,7 +4,7 @@ # ############################################################################### -abstract type AbstractCharacter <: Function end +abstract type AbstractCharacter end struct PermCharacter <: AbstractCharacter p::Generic.Partition @@ -20,6 +20,8 @@ function (chi::PermCharacter)(g::Generic.perm) return Int(Nemo.Generic.MN1inner(R, p, 1, Nemo.Generic._charvalsTable)) end +Nemo.isone(p::GroupElem) = p == parent(p)() + ## NOTE: this works only for Z/2!!!! function (chi::DirectProdCharacter)(g::DirectProductGroupElem) return reduce(*, 1, ((-1)^isone(g.elts[j]) for j in 1:chi.i)) @@ -47,18 +49,17 @@ end # ############################################################################### -function central_projection(RG::GroupRing, chi::AbstractCharacter, - T::Type=Rational{Int}) - result = RG(T) - result.coeffs = full(result.coeffs) - dim = chi(RG.group()) - ord = Int(order(RG.group)) +function central_projection(RG::GroupRing, chi::AbstractCharacter, T::Type=Rational{Int}) + result = RG(T) + result.coeffs = full(result.coeffs) + dim = chi(RG.group()) + ord = Int(order(RG.group)) - for g in RG.basis - result[g] = convert(T, (dim//ord)*chi(g)) - end + for g in RG.basis + result[g] = convert(T, (dim//ord)*chi(g)) + end - return result + return result end function idempotents(RG::GroupRing{Generic.PermGroup}, T::Type=Rational{Int}) @@ -90,12 +91,10 @@ function idempotents(RG::GroupRing{Generic.PermGroup}, T::Type=Rational{Int}) return unique(idems) end -function rankOne_projection(chi::PropertyT.PermCharacter, idems::Vector{S}) where {S<:GroupRingElem} +function rankOne_projection(chi::PropertyT.PermCharacter, idems::Vector{T}) where {T<:GroupRingElem} RG = parent(first(idems)) - T = eltype(first(idems)) - ids = [[one(RG, T)]; idems] for (i,j,k) in Base.product(ids, ids, ids) @@ -112,7 +111,7 @@ function rankOne_projection(chi::PropertyT.PermCharacter, idems::Vector{S}) wher throw("Couldn't find rank-one projection for $chi") end -function minimalprojections(G::Generic.PermGroup, T::Type=Rational{Int}) +function rankOne_projections(G::Generic.PermGroup, T::Type=Rational{Int}) if G.n == 1 return [one(GroupRing(G), T)] elseif G.n < 8 @@ -128,7 +127,7 @@ function minimalprojections(G::Generic.PermGroup, T::Type=Rational{Int}) chars = [PropertyT.PermCharacter(p) for p in parts] min_projs = Vector{eltype(RGidems)}(l) - Threads.@threads for i in 1:l + for i in 1:l chi = PropertyT.PermCharacter(parts[i]) min_projs[i] = rankOne_projection(chi,RGidems)*central_projection(RG,chi) end @@ -136,15 +135,11 @@ function minimalprojections(G::Generic.PermGroup, T::Type=Rational{Int}) return min_projs end -function rankOne_projections(G::Generic.PermGroup, T::Type=Rational{Int}) - return minimalprojections(G, T) -end - function rankOne_projections(BN::WreathProduct, T::Type=Rational{Int}) N = BN.P.n # projections as elements of the group rings RSₙ - SNprojs_nc = [rankOne_projections(PermutationGroup(i), T) for i in 1:N] + SNprojs_nc = [rankOne_projections(PermutationGroup(i)) for i in 1:N] # embedding into group ring of BN RBN = GroupRing(BN) @@ -163,7 +158,7 @@ function rankOne_projections(BN::WreathProduct, T::Type=Rational{Int}) last_emb = g->BN(Nemo.Generic.emb!(BN.P(), g, range[i+1:end])) Sk_first = [RBN(p, first_emb) for p in SNprojs_nc[i]] - Sk_last = [RBN(p, last_emb ) for p in SNprojs_nc[N-i]] + Sk_last = [RBN(p, last_emb) for p in SNprojs_nc[N-i]] append!(all_projs, [Qs[i]*p1*p2 for (p1,p2) in Base.product(Sk_first,Sk_last)]) @@ -187,18 +182,18 @@ doc""" > forming 'products' by adding `op` (which is `*` by default). """ function products{T<:GroupElem}(X::AbstractVector{T}, Y::AbstractVector{T}, op=*) - result = Vector{T}() - seen = Set{T}() - for x in X - for y in Y - z = op(x,y) - if !in(z, seen) - push!(seen, z) - push!(result, z) - end - end - end - return result + result = Vector{T}() + seen = Set{T}() + for x in X + for y in Y + z = op(x,y) + if !in(z, seen) + push!(seen, z) + push!(result, z) + end + end + end + return result end doc""" diff --git a/src/PropertyT.jl b/src/PropertyT.jl index 6c5b3f8..32d4897 100644 --- a/src/PropertyT.jl +++ b/src/PropertyT.jl @@ -26,36 +26,69 @@ function setup_logging(name::String) return logger end +macro logtime(logger, ex) + quote + local stats = Base.gc_num() + local elapsedtime = Base.time_ns() + local val = $(esc(ex)) + elapsedtime = Base.time_ns() - elapsedtime + local diff = Base.GC_Diff(Base.gc_num(), stats) + local ts = time_string(elapsedtime, diff.allocd, diff.total_time, + Base.gc_alloc_count(diff)) + esc(info(logger, ts)) + val + end +end + +function time_string(elapsedtime, bytes, gctime, allocs) + str = @sprintf("%10.6f seconds", elapsedtime/1e9) + if bytes != 0 || allocs != 0 + bytes, mb = Base.prettyprint_getunits(bytes, length(Base._mem_units), Int64(1024)) + allocs, ma = Base.prettyprint_getunits(allocs, length(Base._cnt_units), Int64(1000)) + if ma == 1 + str*= @sprintf(" (%d%s allocation%s: ", allocs, Base._cnt_units[ma], allocs==1 ? "" : "s") + else + str*= @sprintf(" (%.2f%s allocations: ", allocs, Base._cnt_units[ma]) + end + if mb == 1 + str*= @sprintf("%d %s%s", bytes, Base._mem_units[mb], bytes==1 ? "" : "s") + else + str*= @sprintf("%.3f %s", bytes, Base._mem_units[mb]) + end + if gctime > 0 + str*= @sprintf(", %.2f%% gc time", 100*gctime/elapsedtime) + end + str*=")" + elseif gctime > 0 + str*= @sprintf(", %.2f%% gc time", 100*gctime/elapsedtime) + end + return str +end + function exists(fname::String) return isfile(fname) || islink(fname) end -function pmΔfilenames(name::String) - if !isdir(name) - mkdir(name) - end - prefix = name - pm_filename = joinpath(prefix, "pm.jld") - Δ_coeff_filename = joinpath(prefix, "delta.jld") - return pm_filename, Δ_coeff_filename +function pmΔfilenames(prefix::String) + isdir(prefix) || mkdir(prefix) + pm_filename = joinpath(prefix, "pm.jld") + Δ_coeff_filename = joinpath(prefix, "delta.jld") + return pm_filename, Δ_coeff_filename end -function λSDPfilenames(name::String) - if !isdir(name) - mkdir(name) - end - prefix = name - λ_filename = joinpath(prefix, "lambda.jld") - SDP_filename = joinpath(prefix, "SDPmatrix.jld") - return λ_filename, SDP_filename +function λSDPfilenames(prefix::String) + isdir(prefix) || mkdir(prefix) + λ_filename = joinpath(prefix, "lambda.jld") + SDP_filename = joinpath(prefix, "SDPmatrix.jld") + return λ_filename, SDP_filename end -function ΔandSDPconstraints(name::String, G::Group) +function ΔandSDPconstraints(prefix::String, G::Group) info(logger, "Loading precomputed pm, Δ, sdp_constraints...") - pm_fname, Δ_fname = pmΔfilenames(name) + pm_fname, Δ_fname = pmΔfilenames(prefix) product_matrix = load(pm_fname, "pm") - sdp_constraints = constraints_from_pm(product_matrix) + sdp_constraints = constraints(product_matrix) RG = GroupRing(G, product_matrix) Δ = GroupRingElem(load(Δ_fname, "Δ")[:, 1], RG) @@ -73,46 +106,21 @@ function ΔandSDPconstraints{T<:GroupElem}(name::String, S::Vector{T}, Id::T; ra end function ΔandSDPconstraints{T<:GroupElem}(S::Vector{T}, Id::T; radius::Int=2) - B, sizes = Groups.generate_balls(S, Id, radius=2*radius) - info(logger, "Generated balls of sizes $sizes") + info(logger, "Generating balls of sizes $sizes") + @logtime logger E_R, sizes = Groups.generate_balls(S, Id, radius=2*radius) info(logger, "Creating product matrix...") - t = @timed pm = GroupRings.create_pm(B, GroupRings.reverse_dict(B), sizes[radius]; twisted=true) - info(logger, timed_msg(t)) + @logtime logger pm = GroupRings.create_pm(E_R, GroupRings.reverse_dict(E_R), sizes[radius]; twisted=true) info(logger, "Creating sdp_constratints...") - t = @timed sdp_constraints = PropertyT.constraints_from_pm(pm) - info(logger, timed_msg(t)) + @logtime logger sdp_constraints = PropertyT.constraints(pm) - RG = GroupRing(parent(Id), B, pm) + RG = GroupRing(parent(Id), E_R, pm) - Δ = splaplacian(RG, S, Id) + Δ = splaplacian(RG, S) return Δ, sdp_constraints end -macro logtime(logger, ex) - quote - local stats = Base.gc_num() - local elapsedtime = Base.time_ns() - local val = $(esc(ex)) - elapsedtime = Base.time_ns() - elapsedtime - local diff = Base.GC_Diff(Base.gc_num(), stats) - local ts = time_string(elapsedtime, diff.allocd, diff.total_time, - Base.gc_alloc_count(diff)) - esc(warn($(esc(logger)), ts)) - val - end -end - -function timed_msg(t) - elapsed = t[2] - bytes_alloc = t[3] - gc_time = t[4] - gc_diff = t[5] - - return "took: $elapsed s, allocated: $bytes_alloc bytes ($(gc_diff.poolalloc) allocations)." -end - function λandP(name::String) λ_fname, SDP_fname = λSDPfilenames(name) f₁ = exists(λ_fname) @@ -148,7 +156,7 @@ function λandP(name::String, SDP_problem::JuMP.Model, varλ, varP) save(λ_fname, "λ", λ) save(P_fname, "P", P) else - throw(ErrorException("Solver $solver did not produce a valid solution!: λ = $λ")) + throw(ErrorException("Solver did not produce a valid solution!: λ = $λ")) end return λ, P @@ -188,15 +196,10 @@ function check_property_T(name::String, S, Id, solver, upper_bound, tol, radius) info(logger, "|R[G]|.pm = $(size(parent(Δ).pm))") if all(exists.(λSDPfilenames(name))) - # cached λ, P = λandP(name) else - # compute info(logger, "Creating SDP problem...") - - t = @timed SDP_problem, λ, P = create_SDP_problem(Δ, sdp_constraints, upper_bound=upper_bound) - info(logger, timed_msg(t)) - + SDP_problem, λ, P = create_SDP_problem(Δ, sdp_constraints, upper_bound=upper_bound) JuMP.setsolver(SDP_problem, solver) λ, P = λandP(name, SDP_problem, λ, P) @@ -208,13 +211,16 @@ function check_property_T(name::String, S, Id, solver, upper_bound, tol, radius) info(logger, "minimum(P) = $(minimum(P))") if λ > 0 + pm_fname, Δ_fname = pmΔfilenames(name) + RG = GroupRing(parent(first(S)), load(pm_fname, "pm")) + Δ = GroupRingElem(load(Δ_fname, "Δ")[:, 1], RG) isapprox(eigvals(P), abs(eigvals(P)), atol=tol) || warn("The solution matrix doesn't seem to be positive definite!") # @assert P == Symmetric(P) - Q = real(sqrtm(Symmetric(P))) + @logtime logger Q = real(sqrtm(Symmetric(P))) - sgap = check_distance_to_positive_cone(Δ, λ, Q, 2*radius, tol=tol) + sgap = distance_to_positive_cone(Δ, λ, Q, 2*radius) if isa(sgap, Interval) sgap = sgap.lo end diff --git a/src/SDPs.jl b/src/SDPs.jl index b2a9fa5..a12d166 100644 --- a/src/SDPs.jl +++ b/src/SDPs.jl @@ -1,30 +1,30 @@ using JuMP import MathProgBase: AbstractMathProgSolver -function constraints_from_pm(pm, total_length=maximum(pm)) +function constraints(pm, total_length=maximum(pm)) n = size(pm,1) - constraints = [Array{Int,1}[] for x in 1:total_length] + constraints = [Vector{Tuple{Int,Int}}() for _ in 1:total_length] for j in 1:n for i in 1:n idx = pm[i,j] - push!(constraints[idx], [i,j]) + push!(constraints[idx], (i,j)) end end return constraints end -function splaplacian{TT<:Group}(RG::GroupRing{TT}, S, Id=RG.group(), T::Type=Float64) +function splaplacian(RG::GroupRing, S, T::Type=Float64) result = RG(T) - result[Id] = T(length(S)) + result[RG.group()] = T(length(S)) for s in S result[s] -= one(T) end return result end -function splaplacian{TT<:Ring}(RG::GroupRing{TT}, S, Id=one(RG.group), T::Type=Float64) +function splaplacian{TT<:Ring}(RG::GroupRing{TT}, S, T::Type=Float64) result = RG(T) - result[Id] = T(length(S)) + result[one(RG.group)] = T(length(S)) for s in S result[s] -= one(T) end @@ -61,8 +61,7 @@ function solve_SDP(SDP_problem) o = redirect_stdout(solver_logger.handlers["solver_log"].io) Base.Libc.flush_cstdio() - t = @timed solution_status = JuMP.solve(SDP_problem) - info(logger, timed_msg(t)) + @logtime logger solution_status = JuMP.solve(SDP_problem) Base.Libc.flush_cstdio() redirect_stdout(o)