1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2025-01-23 09:10:25 +01:00

add symmetrized sos_problem_dual

This commit is contained in:
Marek Kaluba 2023-10-06 16:23:11 +02:00
parent 9434f5999d
commit 49b4c6f510
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15

View File

@ -70,6 +70,59 @@ function decompose(v::AbstractVector, invariant_vecs)
return res, norm(current - v)
end
function sos_problem_dual(
elt::StarAlgebras.AlgebraElement,
order_unit::StarAlgebras.AlgebraElement,
wd::WedderburnDecomposition,
lower_bound = -Inf,
supp::AbstractVector{<:Integer} = axes(parent(elt).mstructure, 1),
)
@assert parent(elt) == parent(order_unit)
inv_vecs = invariant_vectors(wd)
model = Model()
# 1 dual variable per orbit of G acting on basis
JuMP.@variable(model, y_orb[1:length(inv_vecs)])
# the value of y on order_unit is 1 (y is normalized)
let unit_orbit_cfs = decompose(order_unit, wd)
JuMP.@constraint(model, λ_dual, dot(unit_orbit_cfs, y_orb) == 1)
end
# here we reconstruct the original y;
# TODO: this is **BAD**; do something about it
# y = sum(y .* iv for (y, iv) in zip(y_orb, invariant_vectors(wd)))
y = let y = [JuMP.AffExpr() for _ in 1:length(first(invariant_vectors(wd)))]
for (y_o, iv) in zip(y_orb, invariant_vectors(wd))
for i in SparseArrays.nonzeroinds(iv)
JuMP.add_to_expression!(y[i], nnz(iv) * iv[i], y_o)
end
end
y
end
Ps = let mstr = parent(elt).mstructure, y = y
moment_matrix = [mstr[-i, j] for i in supp, j in supp]
# JuMP.@constraint(model, psd, y[moment_matrix] in PSDCone())
Ps = SymbolicWedderburn.diagonalize(y[moment_matrix], wd)
for P in Ps
JuMP.@constraint(model, P in PSDCone())
end
Ps
end
if !isinf(lower_bound)
throw("Not Implemented yet")
JuMP.@variable(model, λ_ub_dual)
# JuMP.@objective(model, Min, _dot(elt, y_orb, wd) + lower_bound * λ_ub_dual)
else
let elt_orbit_cfs = decompose(elt, wd)
JuMP.@objective(model, Min, dot(elt_orbit_cfs, y_orb, wd))
end
end
return model, Ps
end
"""
sos_problem_primal(X, [u = zero(X); upper_bound=Inf])
Formulate sum of squares decomposition problem for `X - λ·u`.