1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-26 17:05:27 +01:00

remove references to logger!

This commit is contained in:
kalmarek 2018-08-19 20:05:45 +02:00
parent 21bff490dd
commit 540946528c
5 changed files with 108 additions and 151 deletions

View File

@ -1,9 +1,8 @@
julia
JuMP 0.18.0
SCS
IntervalArithmetic
JLD
Memento
AbstractAlgebra
Groups
GroupRings
IntervalArithmetic
JuMP 0.18.0
JLD
SCS

View File

@ -43,56 +43,52 @@ function augIdproj(Q::AbstractArray{T,2}) where {T<:Real}
return R
end
function augIdproj(Q::AbstractArray{T,2}, logger) where {T<:Real}
info(logger, "Projecting columns of Q to the augmentation ideal...")
@logtime logger Q = augIdproj(Q)
info(logger, "Checking that sum of every column contains 0.0... ")
check = all([zero(T) in sum(view(Q, :, i)) for i in 1:size(Q, 2)])
info(logger, (check? "They do." : "FAILED!"))
@assert check
return Q
end
function distance_to_cone(Δ::GroupRingElem, λ, Q; wlen::Int=4, logger=getlogger())
info(logger, "------------------------------------------------------------")
info(logger, "Checking in floating-point arithmetic...")
info(logger, "λ = ")
@logtime logger sos = compute_SOS(parent(Δ), Q)
function distance_to_cone(Δ::GroupRingElem, λ, Q; wlen::Int=4)
info("------------------------------------------------------------")
info("Checking in floating-point arithmetic...")
info("λ = ")
@time sos = compute_SOS(parent(Δ), Q)
residue = Δ^2-λ*Δ - sos
info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ≈ $(@sprintf("%.10f", aug(residue)))")
info("ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ≈ $(@sprintf("%.10f", aug(residue)))")
L1_norm = norm(residue,1)
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", L1_norm))")
info("‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", L1_norm))")
distance = λ - 2^(wlen-1)*L1_norm
info(logger, "Floating point distance (to positive cone) ≈")
info(logger, "$(@sprintf("%.10f", distance))")
info(logger, "")
info("Floating point distance (to positive cone) ≈")
info("$(@sprintf("%.10f", distance))")
info("")
if distance 0
return distance
end
info("------------------------------------------------------------")
info("Checking in interval arithmetic...")
info("λ ∈ ")
λ = @interval(λ)
eoi = Δ^2 - λ*Δ
Q = augIdproj(Q, logger)
info("Projecting columns of Q to the augmentation ideal...")
T = eltype(Q)
@time Q = augIdproj(Q)
info(logger, "------------------------------------------------------------")
info(logger, "Checking in interval arithmetic...")
info(logger, "λ ∈ ")
@logtime logger sos = compute_SOS(parent(Δ), Q)
info("Checking that sum of every column contains 0.0... ")
check = all([zero(T) in sum(view(Q, :, i)) for i in 1:size(Q, 2)])
info((check? "They do." : "FAILED!"))
@assert check
@time sos = compute_SOS(parent(Δ), Q)
residue = Δ^2-λ*Δ - sos
info(logger, "ɛ(∑ξᵢ*ξᵢ) ∈ $(aug(residue))")
info("ɛ(∑ξᵢ*ξᵢ) ∈ $(aug(residue))")
L1_norm = norm(residue,1)
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(L1_norm)")
info("‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(L1_norm)")
distance = λ - 2^(wlen-1)*L1_norm
info(logger, "The Augmentation-projected distance (to positive cone) ∈")
info(logger, "$(distance)")
info(logger, "")
info("The Augmentation-projected distance (to positive cone) ∈")
info("$(distance)")
info("")
return distance.lo
end

View File

@ -14,7 +14,6 @@ immutable Settings{T<:AbstractMathProgSolver}
upper_bound::Float64
tol::Float64
warmstart::Bool
logger
end
prefix(s::Settings) = s.name
@ -167,8 +166,8 @@ function init_model(n, sizes)
end
function create_SDP_problem(sett::Settings)
info(sett.logger, "Loading orbit data....")
@logtime sett.logger SDP_problem, orb_data = OrbitData(sett);
info("Loading orbit data....")
@time SDP_problem, orb_data = OrbitData(sett);
if sett.upper_bound < Inf
λ = JuMP.getvariable(SDP_problem, )
@ -176,8 +175,8 @@ function create_SDP_problem(sett::Settings)
end
t = length(orb_data.laplacian)
info(sett.logger, "Adding $t constraints ... ")
@logtime sett.logger addconstraints!(SDP_problem, orb_data)
info("Adding $t constraints ... ")
@time addconstraints!(SDP_problem, orb_data)
return SDP_problem, orb_data
end
@ -190,14 +189,14 @@ function λandP(m::JuMP.Model, data::OrbitData, warmstart=true)
end
function λandP(m::JuMP.Model, data::OrbitData, sett::Settings)
info(sett.logger, "Solving SDP problem...")
@logtime sett.logger λ, Ps = λandP(m, data, sett.warmstart)
info("Solving SDP problem...")
@time λ, Ps = λandP(m, data, sett.warmstart)
info(sett.logger, "Reconstructing P...")
info("Reconstructing P...")
preps = load_preps(filename(prepath(sett), :preps), sett.autS)
@logtime sett.logger recP = reconstruct_sol(preps, data.Us, Ps, data.dims)
@time recP = reconstruct_sol(preps, data.Us, Ps, data.dims)
fname = filename(fullpath(sett), :P)
save(fname, "origP", Ps, "P", recP)
@ -223,7 +222,7 @@ function check_property_T(sett::Settings)
files_exists = ex.([:pm, , :Uπs, :orb, :preps])
if !all(files_exists)
compute_orbit_data(sett.logger, prepath(sett), sett.S, sett.autS, radius=sett.radius)
compute_orbit_data(prepath(sett), sett.S, sett.autS, radius=sett.radius)
end
cond1 = exists(filename(fullpath(sett), ))
@ -232,21 +231,21 @@ function check_property_T(sett::Settings)
if !sett.warmstart && cond1 && cond2
λ, P = λandP(fullpath(sett))
else
info(sett.logger, "Creating SDP problem...")
info("Creating SDP problem...")
SDP_problem, orb_data = create_SDP_problem(sett)
JuMP.setsolver(SDP_problem, sett.solver)
info(sett.logger, Base.repr(SDP_problem))
info(Base.repr(SDP_problem))
λ, P = λandP(SDP_problem, orb_data, sett)
end
info(sett.logger, "λ = ")
info(sett.logger, "sum(P) = $(sum(P))")
info(sett.logger, "maximum(P) = $(maximum(P))")
info(sett.logger, "minimum(P) = $(minimum(P))")
info("λ = ")
info("sum(P) = $(sum(P))")
info("maximum(P) = $(maximum(P))")
info("minimum(P) = $(minimum(P))")
isapprox(eigvals(P), abs.(eigvals(P)), atol=sett.tol) ||
warn("The solution matrix doesn't seem to be positive definite!")
return interpret_results(sett.name, sett.S, sett.radius, λ, P, sett.logger)
return interpret_results(sett.name, sett.S, sett.radius, λ, P)
end

View File

@ -128,51 +128,51 @@ function orthSVD{T}(M::AbstractMatrix{T})
return fact[:U][:,1:M_rank]
end
function compute_orbit_data{T<:GroupElem}(logger, name::String, S::Vector{T}, autS::Group; radius=2)
function compute_orbit_data{T<:GroupElem}(name::String, S::Vector{T}, autS::Group; radius=2)
isdir(name) || mkdir(name)
info(logger, "Generating ball of radius $(2*radius)")
info("Generating ball of radius $(2*radius)")
# TODO: Fix that by multiple dispatch?
G = parent(first(S))
Id = (isa(G, Ring) ? one(G) : G())
@logtime logger E_2R, sizes = Groups.generate_balls(S, Id, radius=2*radius);
info(logger, "Balls of sizes $sizes.")
info(logger, "Reverse dict")
@logtime logger E_rdict = GroupRings.reverse_dict(E_2R)
@time E_2R, sizes = Groups.generate_balls(S, Id, radius=2*radius);
info("Balls of sizes $sizes.")
info("Reverse dict")
@time E_rdict = GroupRings.reverse_dict(E_2R)
info(logger, "Product matrix")
@logtime logger pm = GroupRings.create_pm(E_2R, E_rdict, sizes[radius], twisted=true)
info("Product matrix")
@time pm = GroupRings.create_pm(E_2R, E_rdict, sizes[radius], twisted=true)
RG = GroupRing(G, E_2R, E_rdict, pm)
Δ = PropertyT.spLaplacian(RG, S)
@assert GroupRings.aug(Δ) == 0
save(filename(name, ), "Δ", Δ.coeffs)
save(filename(name, :pm), "pm", pm)
info(logger, "Decomposing E into orbits of $(autS)")
@logtime logger orbs = orbit_decomposition(autS, E_2R, E_rdict)
info("Decomposing E into orbits of $(autS)")
@time orbs = orbit_decomposition(autS, E_2R, E_rdict)
@assert sum(length(o) for o in orbs) == length(E_2R)
info(logger, "E consists of $(length(orbs)) orbits!")
info("E consists of $(length(orbs)) orbits!")
save(joinpath(name, "orbits.jld"), "orbits", orbs)
info(logger, "Action matrices")
@logtime logger reps = perm_reps(autS, E_2R[1:sizes[radius]], E_rdict)
info("Action matrices")
@time reps = perm_reps(autS, E_2R[1:sizes[radius]], E_rdict)
save_preps(filename(name, :preps), reps)
reps = matrix_reps(reps)
info(logger, "Projections")
@logtime logger autS_mps = Projections.rankOne_projections(GroupRing(autS));
info("Projections")
@time autS_mps = Projections.rankOne_projections(GroupRing(autS));
@logtime logger π_E_projections = [Cstar_repr(p, reps) for p in autS_mps]
@time π_E_projections = [Cstar_repr(p, reps) for p in autS_mps]
info(logger, "Uπs...")
@logtime logger Uπs = orthSVD.(π_E_projections)
info("Uπs...")
@time Uπs = orthSVD.(π_E_projections)
multiplicities = size.(Uπs,2)
info(logger, "multiplicities = $multiplicities")
info("multiplicities = $multiplicities")
dimensions = [Int(p[autS()]*Int(order(autS))) for p in autS_mps];
info(logger, "dimensions = $dimensions")
info("dimensions = $dimensions")
@assert dot(multiplicities, dimensions) == sizes[radius]
save(joinpath(name, "U_pis.jld"),

View File

@ -1,3 +1,4 @@
__precompile__()
module PropertyT
using AbstractAlgebra
@ -10,55 +11,6 @@ using JLD
using JuMP
using MathProgBase
using Memento
function setup_logging(name::String, handlername::Symbol)
isdir(name) || mkdir(name)
logger = Memento.config!("info", fmt="{date}| {msg}")
handler = DefaultHandler(filename(name, Symbol(handlername)), DefaultFormatter("{date}| {msg}"))
logger.handlers[String(handlername)] = handler
return logger
end
macro logtime(logger, ex)
quote
local stats = Base.gc_num()
local elapsedtime = Base.time_ns()
local val = $(esc(ex))
elapsedtime = Base.time_ns() - elapsedtime
local diff = Base.GC_Diff(Base.gc_num(), stats)
local ts = time_string(elapsedtime, diff.allocd, diff.total_time,
Base.gc_alloc_count(diff))
$(esc(info))($(esc(logger)), ts)
val
end
end
function time_string(elapsedtime, bytes, gctime, allocs)
str = @sprintf("%10.6f seconds", elapsedtime/1e9)
if bytes != 0 || allocs != 0
bytes, mb = Base.prettyprint_getunits(bytes, length(Base._mem_units), Int64(1024))
allocs, ma = Base.prettyprint_getunits(allocs, length(Base._cnt_units), Int64(1000))
if ma == 1
str*= @sprintf(" (%d%s allocation%s: ", allocs, Base._cnt_units[ma], allocs==1 ? "" : "s")
else
str*= @sprintf(" (%.2f%s allocations: ", allocs, Base._cnt_units[ma])
end
if mb == 1
str*= @sprintf("%d %s%s", bytes, Base._mem_units[mb], bytes==1 ? "" : "s")
else
str*= @sprintf("%.3f %s", bytes, Base._mem_units[mb])
end
if gctime > 0
str*= @sprintf(", %.2f%% gc time", 100*gctime/elapsedtime)
end
str*=")"
elseif gctime > 0
str*= @sprintf(", %.2f%% gc time", 100*gctime/elapsedtime)
end
return str
end
exists(fname::String) = isfile(fname) || islink(fname)
filename(prefix, s::Symbol) = filename(prefix, Val{s})
@ -92,15 +44,14 @@ function Laplacian(name::String, G::Group)
return Δ
end
function Laplacian{T<:GroupElem}(S::Vector{T}, Id::T,
logger=getlogger(); radius::Int=2)
function Laplacian{T<:GroupElem}(S::Vector{T}, Id::T; radius::Int=2)
info(logger, "Generating metric ball of radius $radius...")
@logtime logger E_R, sizes = Groups.generate_balls(S, Id, radius=2*radius)
info(logger, "Generated balls of sizes $sizes.")
info("Generating metric ball of radius $radius...")
@time E_R, sizes = Groups.generate_balls(S, Id, radius=2*radius)
info("Generated balls of sizes $sizes.")
info(logger, "Creating product matrix...")
@logtime logger pm = GroupRings.create_pm(E_R, GroupRings.reverse_dict(E_R), sizes[radius]; twisted=true)
info("Creating product matrix...")
@time pm = GroupRings.create_pm(E_R, GroupRings.reverse_dict(E_R), sizes[radius]; twisted=true)
RG = GroupRing(parent(Id), E_R, pm)
@ -155,15 +106,14 @@ Kazhdan(λ::Number,N::Integer) = sqrt(2*λ/N)
function check_property_T(name::String, S, Id, solver, upper_bound, tol, radius, warm::Bool=false)
isdir(name) || mkdir(name)
logger = Memento.getlogger()
if exists(filename(name, :pm)) && exists(filename(name, ))
# cached
info(logger, "Loading precomputed Δ...")
info("Loading precomputed Δ...")
Δ = Laplacian(name, parent(S[1]))
else
# compute
Δ = Laplacian(S, Id, logger, radius=radius)
Δ = Laplacian(S, Id, radius=radius)
save(filename(name, :pm), "pm", parent(Δ).pm)
save(filename(name, ), "Δ", Δ.coeffs)
end
@ -171,48 +121,61 @@ function check_property_T(name::String, S, Id, solver, upper_bound, tol, radius,
fullpath = joinpath(name, string(upper_bound))
isdir(fullpath) || mkdir(fullpath)
cond1 = exists(filename(fullpath, ))
cond2 = exists(filename(fullpath, :P))
files_exist = exists(filename(fullpath, )) && exists(filename(fullpath, :P))
if !(warm) && cond1 && cond2
info(logger, "Loading precomputed λ, P...")
if !(warm) && files_exist
info("Loading precomputed λ, P...")
λ, P = λandP(fullpath)
else
info(logger, "Creating SDP problem...")
info("Creating SDP problem...")
SDP_problem, varλ, varP = create_SDP_problem(Δ, constraints(parent(Δ).pm), upper_bound=upper_bound)
JuMP.setsolver(SDP_problem, solver)
info(logger, Base.repr(SDP_problem))
info(Base.repr(SDP_problem))
@logtime logger λ, P = λandP(fullpath, SDP_problem, varλ, varP)
if warm && isfile(filename(name, :warm))
ws = load(filename(name, :warm), "warmstart")
else
ws = nothing
end
info(logger, "λ = ")
info(logger, "sum(P) = $(sum(P))")
info(logger, "maximum(P) = $(maximum(P))")
info(logger, "minimum(P) = $(minimum(P))")
@time λ, P, ws = λandP(SDP_problem, varλ, varP, warmstart=ws, solverlog=filename(name, :solverlog))
if λ > 0
save(filename(name, ), "λ", λ)
save(filename(name, :P), "P", P)
save(filename(name, :warm), "warmstart", ws)
else
throw(ErrorException("Solver did not produce a valid solution: λ = "))
end
end
info("λ = ")
info("sum(P) = $(sum(P))")
info("maximum(P) = $(maximum(P))")
info("minimum(P) = $(minimum(P))")
isapprox(eigvals(P), abs.(eigvals(P)), atol=tol) ||
warn("The solution matrix doesn't seem to be positive definite!")
return interpret_results(name, S, radius, λ, P, logger)
return interpret_results(name, S, radius, λ, P)
end
function interpret_results(name, S, radius, λ, P, logger)
function interpret_results(name, S, radius, λ, P)
RG = GroupRing(parent(first(S)), load(filename(name, :pm), "pm"))
Δ = GroupRingElem(load(filename(name, ), "Δ")[:, 1], RG)
@logtime logger Q = real(sqrtm(Symmetric(P)))
@time Q = real(sqrtm(Symmetric(P)))
sgap = distance_to_cone(Δ, λ, Q, wlen=2*radius, logger=logger)
sgap = distance_to_cone(Δ, λ, Q, wlen=2*radius)
if sgap > 0
Kazhdan_κ = Kazhdan(sgap, length(S))
if Kazhdan_κ > 0
info(logger, "κ($name, S) ≥ $Kazhdan_κ: Group HAS property (T)!")
info("κ($name, S) ≥ $Kazhdan_κ: Group HAS property (T)!")
return true
end
end
info(logger, "λ($name, S) ≥ $sgap < 0: Tells us nothing about property (T)")
info("λ($name, S) ≥ $sgap < 0: Tells us nothing about property (T)")
return false
end