1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-13 22:05:27 +01:00

add initial implementation of orbit_basis

This commit is contained in:
Marek Kaluba 2024-02-06 13:31:43 +01:00
parent 3f11b2df9a
commit 589b30812f
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
2 changed files with 362 additions and 0 deletions

View File

@ -25,6 +25,8 @@ include("gradings.jl")
include("actions/actions.jl")
include("orbit_basis.jl")
function group_algebra(G::Groups.Group, S = gens(G); halfradius::Integer)
S = union!(S, inv.(S))
@info "generating wl-metric ball of radius $(2halfradius)"

360
src/orbit_basis.jl Normal file
View File

@ -0,0 +1,360 @@
function minimal_in_orbit(f, x, group, act::SymbolicWedderburn.Action)
stab_size = UInt32(0)
min, min_elt = f(x), x
for g in group
y = action(act, g, x)
if y == x
stab_size += 1
continue
else
fy = f(y)
if fy < min
min, min_elt = fy, y
end
end
end
return min_elt, stab_size
end
function saturate!(
f,
gens,
elements,
stab_sizes,
hashes = Set(elements);
start_at = firstindex(elements),
)
g_shifted = similar(gens)
s_sizes = similar(gens, UInt32)
already_seen = similar(gens, Bool)
range = start_at:lastindex(elements)
ProgressMeter.@showprogress 2.0 "Computing Orbit representatives: $(length(range))" for idx in
range
g = elements[idx]
Threads.@threads for i in eachindex(gens)
h, s_size = f(g * gens[i])
g_shifted[i] = h
s_sizes[i] = s_size
already_seen[i] = h in hashes
end
# t = g_shifted[.!seen]
# t = unique!(t)
# append!(old, t)
# union!(hashes, t)
for (seen, g, ssize) in zip(already_seen, g_shifted, s_sizes)
if !seen
if !(g in hashes)
push!(elements, g)
push!(stab_sizes, ssize)
push!(hashes, g)
end
end
end
end
return elements, stab_sizes, hashes
end
function orbit_reps(
seed_elts,
Σ::Groups.Group,
act::SymbolicWedderburn.Action;
radius::Integer,
minimize = hash,
)
@assert !isempty(seed_elts)
@assert radius 0
if Groups.order(Int, Σ) < 2^15
f = x -> minimal_in_orbit(minimize, x, collect(Σ), act)
else
f = x -> minimal_in_orbit(minimize, x, Σ, act)
end
orbits = [one(first(seed_elts))]
stab_sizes = [order(UInt32, Σ)]
hashes = Set(orbits)
sizes = ones(Int, radius + 1)
start_at = sizes[1]
for r in 1:radius
orbits, hashes = saturate!(
f,
seed_elts,
orbits,
stab_sizes,
hashes;
start_at = start_at,
)
sizes[r+1] = length(orbits)
start_at = sizes[r]
end
return (orbits, stab_sizes), sizes[begin+1:end]
end
###
# move to StarAlgebras
import SparseArrays
function SparseArrays.indtype(b::StarAlgebras.AbstractBasis)
return SparseArrays.indtype(typeof(b))
end
function SparseArrays.indtype(
::Type{<:StarAlgebras.AbstractBasis{T,I}},
) where {T,I}
return I
end
###
struct OrbitBasis{T,I,G,A,F} <: StarAlgebras.AbstractBasis{T,I}
orbit_reps::StarAlgebras.Basis{T,I}
stab_size::Vector{UInt32}
group::G
action::A
__minimize_function::F
function OrbitBasis(
orbit_reps::StarAlgebras.AbstractBasis{T,I},
grp,
act::SymbolicWedderburn.Action,
minimize,
stab_size::AbstractVector{<:Integer},
) where {T,I}
return new{T,I,typeof(grp),typeof(act),typeof(minimize)}(
orbits_reps,
grp,
act,
stab_size,
minimize,
)
end
end
__group_of(ob::OrbitBasis) = ob.group
SymbolicWedderburn.action(ob::OrbitBasis) = ob.action
Base.size(ob::OrbitBasis) = size(ob.orbit_reps)
Base.getindex(ob::OrbitBasis, i::Integer) = ob.orbit_reps[i]
function Base.getindex(ob::OrbitBasis{T}, x::T) where {T}
if x in ob.orbit_reps
return ob.orbit_reps[x]
else
for σ in __group_of(ob)
y = action(action(ob), σ, x)
y in ob.orbit_reps && return ob.orbit_reps[y]
end
argmin(ob.__minimize_function)
throw(KeyError(minimal_in_orbit(hash, x, __group_of(ob), action(ob))))
# y = minimal_in_orbit(hash, x, __group_of(ob), action(ob))
# y in ob.basis ? return ob.basis[y] : throw("NotInBasis")
end
end
function _mtable(
basis::StarAlgebras.AbstractBasis{T},
orbits::OrbitBasis{T},
table_size,
) where {T}
M = zeros(SparseArrays.indtype(orbits), table_size)
starof = zeros(eltype(M), size(M, 1))
# it is safe to do Threads.@threads here, since
# in case of race condition (two threads overwriting a single entry in M)
# * M[idx, jdx] is 0 at the beginning,
# * M[idx, jdx] will be written by two threads
# thread, we will be computing and overwriting with the same value;
Threads.@threads for jdx in axes(M, 2)
b = basis[jdx]
starof[jdx] = basis[StarAlgebras.star(b)]
for idx in axes(M, 1)
!iszero(M[idx, jdx]) && continue
a = basis[idx]
k = orbits[a*b]
for g in orbits.group
aᵍ = action(action(orbits), g, a)
bᵍ = action(action(orbits), g, b)
M[basis[aᵍ], basis[bᵍ]] = k
end
end
end
@assert all(!iszero, starof)
@assert all(!iszero, M)
return StarAlgebras.MTable(M, starof)
end
function constraints(
basis_half::StarAlgebras.AbstractBasis,
orbits::OrbitBasis;
augmented::Bool,
basis_support,
)
l = length(basis_support)
mstr = _mtable(basis_half, orbits, (l, l))
id = orbits[one(first(basis_half))]
cnstrs = _constraints(mstr; augmented = augmented, id = id)
ordG = length(__group_of(orbits))
return Dict(
orbits[i] =>
ConstraintMatrix(c, size(mstr)..., orbits.stab_size[i] / ordG) for
(i, c) in pairs(cnstrs) if !isempty(c)
)
end
## move to Tests
#=
mt = let R = 2, sizes = sizes
mt = @time _mtable(basis(RG), obasis, (sizes[R], sizes[R]))
# k = findlast(o -> basis(RG)[o] ≤ sizes[R], orbits)
# @assert k == osizes[2R]
@assert all((osizes[2R]), mt)
@assert all(>(0), mt)
for i in 1:sizes[1]
for j in 1:sizes[1]
@assert obasis[basis(RG)[i]*basis(RG)[j]] == mt[i, j]
end
end
@assert maximum(mt) == osizes[2R]
C = PropertyT._constraints(mt; augmented = true, id = 1)
@assert length(C) == osizes[2R]
@assert all(!isempty, C)
mt
end
=#
function SymbolicWedderburn.WedderburnDecomposition(
T::Type,
G::Groups.Group,
action::SymbolicWedderburn.Action,
orbit_basis::OrbitBasis,
basis_half,
S = Rational{Int};
semisimple = false,
)
tbl = SymbolicWedderburn.CharacterTable(S, G)
ehom = SymbolicWedderburn.CachedExtensionHomomorphism(
G,
action,
basis_half;
precompute = true,
)
Uπs = SymbolicWedderburn.symmetry_adapted_basis(
T,
tbl,
ehom;
semisimple = semisimple,
)
return SymbolicWedderburn.WedderburnDecomposition(
basis_half,
orbit_basis,
Uπs,
ehom,
)
end
function sos_problem_primal(
elt::StarAlgebras.AlgebraElement,
order_unit::StarAlgebras.AlgebraElement,
wedderburn::WedderburnDecomposition{B,<:OrbitBasis};
upper_bound = Inf,
augmented::Bool = iszero(StarAlgebras.aug(elt)) &&
iszero(StarAlgebras.aug(order_unit)),
check_orthogonality = true,
show_progress = false,
constraints = PropertyT.constraints(
basis(wedderburn),
invariant_vectors(wedderburn);
augmented = augmented,
basis_support = 1:length(basis(wedderburn)),
),
) where {B}
@assert parent(elt) === parent(order_unit)
if check_orthogonality
if any(!isorth_projection, direct_summands(wedderburn))
error(
"Wedderburn decomposition contains a non-orthogonal projection",
)
end
end
prog = ProgressMeter.Progress(
length(invariant_vectors(wedderburn));
dt = 1,
desc = "Adding constraints: ",
enabled = show_progress,
barlen = 60,
showspeed = true,
)
feasibility_problem = iszero(order_unit)
# problem creation starts here
model = JuMP.Model()
if !feasibility_problem # add λ of not?
JuMP.@variable(model, λ)
JuMP.@objective(model, Max, λ)
end
if isfinite(upper_bound)
if feasibility_problem
@warn "setting `upper_bound` with zero `unit` has no effect"
else
JuMP.@constraint(model, λ <= upper_bound)
end
end
# semidefinite constraints as described by wedderburn
Ps = map(direct_summands(wedderburn)) do ds
dim = size(ds, 1)
P = JuMP.@variable(model, [1:dim, 1:dim], Symmetric)
JuMP.@constraint(model, P in PSDCone())
return P
end
begin # Ms are preallocated for the constraints loop
T = eltype(wedderburn)
Ms = [spzeros.(T, size(p)...) for p in Ps]
_eps = 10 * eps(T) * max(size(parent(elt).mstructure)...)
end
id_one = findfirst(isone, invariant_vectors(wedderburn))
# adding linear constraints: one per orbit
for (i, r) in enumerate(invariant_vectors(wedderburn))
ProgressMeter.next!(prog; showvalues = __show_itrs(i, prog.n))
augmented && i == id_one && continue
A_r = sparse(constraints[r])
Ms = SymbolicWedderburn.diagonalize!(
Ms,
A_r,
wedderburn;
trace_preserving = true,
)
for M in Ms
SparseArrays.droptol!(M, _eps)
end
if r in basis(parent(elt))
if feasibility_problem
JuMP.@constraint(model, elt(r) == _dot(Ps, Ms))
else
JuMP.@constraint(
model,
elt(r) - λ * order_unit(r) == _dot(Ps, Ms)
)
end
else
JuMP.@constraint(model, 0 == PropertyT._dot(Ps, Ms))
end
end
ProgressMeter.finish!(prog)
return model, Ps
end