mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-22 16:05:27 +01:00
define and use one(::Group)
This commit is contained in:
parent
4bce106c2d
commit
5e821286e5
@ -17,6 +17,8 @@ import AbstractAlgebra: Group, NCRing, perm
|
|||||||
|
|
||||||
import MathProgBase.SolverInterface.AbstractMathProgSolver
|
import MathProgBase.SolverInterface.AbstractMathProgSolver
|
||||||
|
|
||||||
|
AbstractAlgebra.one(G::Group) = G()
|
||||||
|
|
||||||
include("laplacians.jl")
|
include("laplacians.jl")
|
||||||
include("RGprojections.jl")
|
include("RGprojections.jl")
|
||||||
include("orbitdata.jl")
|
include("orbitdata.jl")
|
||||||
|
@ -70,7 +70,7 @@ end
|
|||||||
|
|
||||||
function central_projection(RG::GroupRing, chi::AbstractCharacter, T::Type=Rational{Int})
|
function central_projection(RG::GroupRing, chi::AbstractCharacter, T::Type=Rational{Int})
|
||||||
result = RG(zeros(T, length(RG.basis)))
|
result = RG(zeros(T, length(RG.basis)))
|
||||||
dim = chi(RG.group())
|
dim = chi(one(RG.group))
|
||||||
ord = Int(order(RG.group))
|
ord = Int(order(RG.group))
|
||||||
|
|
||||||
for g in RG.basis
|
for g in RG.basis
|
||||||
@ -187,8 +187,8 @@ function rankOne_projections(RBn::GroupRing{G}, T::Type=Rational{Int}) where {G<
|
|||||||
|
|
||||||
r = collect(1:N)
|
r = collect(1:N)
|
||||||
for i in 1:N-1
|
for i in 1:N-1
|
||||||
first_emb = g->Bn(Generic.emb!(Bn.P(), g, view(r, 1:i)))
|
first_emb = g->Bn(Generic.emb!(one(Bn.P), g, view(r, 1:i)))
|
||||||
last_emb = g->Bn(Generic.emb!(Bn.P(), g, view(r, (i+1):N)))
|
last_emb = g->Bn(Generic.emb!(one(Bn.P), g, view(r, (i+1):N)))
|
||||||
|
|
||||||
Sk_first = (RBn(first_emb, p) for p in Sn_rankOnePr[i])
|
Sk_first = (RBn(first_emb, p) for p in Sn_rankOnePr[i])
|
||||||
Sk_last = (RBn(last_emb, p) for p in Sn_rankOnePr[N-i])
|
Sk_last = (RBn(last_emb, p) for p in Sn_rankOnePr[N-i])
|
||||||
@ -238,7 +238,7 @@ end
|
|||||||
> The identity element `Id` and binary operation function `op` can be supplied
|
> The identity element `Id` and binary operation function `op` can be supplied
|
||||||
> to e.g. take advantage of additive group structure.
|
> to e.g. take advantage of additive group structure.
|
||||||
"""
|
"""
|
||||||
function generateGroup(gens::Vector{T}, r=2, Id::T=parent(first(gens))(), op=*) where {T<:GroupElem}
|
function generateGroup(gens::Vector{T}, r=2, Id::T=one(parent(first(gens))), op=*) where {T<:GroupElem}
|
||||||
n = 0
|
n = 0
|
||||||
R = 1
|
R = 1
|
||||||
elts = gens
|
elts = gens
|
||||||
|
@ -4,36 +4,26 @@
|
|||||||
#
|
#
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
function spLaplacian(RG::GroupRing, S::AbstractVector{El}, T::Type=Float64) where El
|
function spLaplacian(RG::GroupRing, S::AbstractVector, T::Type=Float64)
|
||||||
result = RG(T)
|
result = RG(T)
|
||||||
id = (El <: AbstractAlgebra.NCRingElem ? one(RG.group) : RG.group())
|
result[one(RG.group)] = T(length(S))
|
||||||
result[id] = T(length(S))
|
|
||||||
for s in S
|
for s in S
|
||||||
result[s] -= one(T)
|
result[s] -= one(T)
|
||||||
end
|
end
|
||||||
return result
|
return result
|
||||||
end
|
end
|
||||||
|
|
||||||
function Laplacian(S::AbstractVector{REl}, halfradius) where REl<:AbstractAlgebra.NCRingElem
|
function Laplacian(S::AbstractVector{REl}, halfradius) where REl<:Union{NCRingElem, GroupElem}
|
||||||
R = parent(first(S))
|
|
||||||
return Laplacian(S, one(R), halfradius)
|
|
||||||
end
|
|
||||||
|
|
||||||
function Laplacian(S::AbstractVector{E}, halfradius) where E<:AbstractAlgebra.GroupElem
|
|
||||||
G = parent(first(S))
|
G = parent(first(S))
|
||||||
return Laplacian(S, G(), halfradius)
|
|
||||||
end
|
|
||||||
|
|
||||||
function Laplacian(S, Id, halfradius)
|
|
||||||
@info "Generating metric ball of radius" radius=2halfradius
|
@info "Generating metric ball of radius" radius=2halfradius
|
||||||
@time E_R, sizes = Groups.generate_balls(S, Id, radius=2halfradius)
|
@time E_R, sizes = Groups.generate_balls(S, one(G), radius=2halfradius)
|
||||||
@info "Generated balls:" sizes
|
@info "Generated balls:" sizes
|
||||||
|
|
||||||
@info "Creating product matrix..."
|
@info "Creating product matrix..."
|
||||||
rdict = GroupRings.reverse_dict(E_R)
|
rdict = GroupRings.reverse_dict(E_R)
|
||||||
@time pm = GroupRings.create_pm(E_R, rdict, sizes[halfradius]; twisted=true)
|
@time pm = GroupRings.create_pm(E_R, rdict, sizes[halfradius]; twisted=true)
|
||||||
|
|
||||||
RG = GroupRing(parent(Id), E_R, rdict, pm)
|
RG = GroupRing(G, E_R, rdict, pm)
|
||||||
Δ = spLaplacian(RG, S)
|
Δ = spLaplacian(RG, S)
|
||||||
return Δ
|
return Δ
|
||||||
end
|
end
|
||||||
|
@ -28,7 +28,7 @@ function OrbitData(RG::GroupRing, autS::Group, verbose=true)
|
|||||||
@time Uπs = [orthSVD(matrix_repr(p, mreps)) for p in autS_mps]
|
@time Uπs = [orthSVD(matrix_repr(p, mreps)) for p in autS_mps]
|
||||||
|
|
||||||
multiplicities = size.(Uπs,2)
|
multiplicities = size.(Uπs,2)
|
||||||
dimensions = [Int(p[autS()]*Int(order(autS))) for p in autS_mps]
|
dimensions = [Int(p[one(autS)]*Int(order(autS))) for p in autS_mps]
|
||||||
if verbose
|
if verbose
|
||||||
info_strs = ["",
|
info_strs = ["",
|
||||||
lpad("multiplicities", 14) * " =" * join(lpad.(multiplicities, 4), ""),
|
lpad("multiplicities", 14) * " =" * join(lpad.(multiplicities, 4), ""),
|
||||||
@ -273,8 +273,8 @@ end
|
|||||||
function AutFG_emb(A::AutGroup, g::WreathProductElem)
|
function AutFG_emb(A::AutGroup, g::WreathProductElem)
|
||||||
isa(A.objectGroup, FreeGroup) || throw("Not an Aut(Fₙ)")
|
isa(A.objectGroup, FreeGroup) || throw("Not an Aut(Fₙ)")
|
||||||
parent(g).P.n == length(A.objectGroup.gens) || throw("No natural embedding of $(parent(g)) into $A")
|
parent(g).P.n == length(A.objectGroup.gens) || throw("No natural embedding of $(parent(g)) into $A")
|
||||||
elt = A()
|
elt = one(A)
|
||||||
Id = parent(g.n.elts[1])()
|
Id = one(parent(g.n.elts[1]))
|
||||||
flips = Groups.AutSymbol[Groups.flip_autsymbol(i) for i in 1:length(g.p.d) if g.n.elts[i] != Id]
|
flips = Groups.AutSymbol[Groups.flip_autsymbol(i) for i in 1:length(g.p.d) if g.n.elts[i] != Id]
|
||||||
Groups.r_multiply!(elt, flips, reduced=false)
|
Groups.r_multiply!(elt, flips, reduced=false)
|
||||||
Groups.r_multiply!(elt, [Groups.perm_autsymbol(g.p)])
|
Groups.r_multiply!(elt, [Groups.perm_autsymbol(g.p)])
|
||||||
|
Loading…
Reference in New Issue
Block a user