1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2025-01-13 22:52:34 +01:00

update README with the correct links/references

This commit is contained in:
Marek Kaluba 2022-11-08 22:59:54 +01:00
parent 2b20a5bb34
commit 697cecb286
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15

View File

@ -1,15 +1,20 @@
# Property(T)
[![Build Status](https://travis-ci.org/kalmarek/PropertyT.jl.svg?branch=master)](https://travis-ci.org/kalmarek/PropertyT.jl)
[![CI](https://github.com/kalmarek/PropertyT.jl/actions/workflows/ci.yml/badge.svg)](https://github.com/kalmarek/PropertyT.jl/actions/workflows/ci.yml)
[![codecov](https://codecov.io/gh/kalmarek/PropertyT.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/kalmarek/PropertyT.jl)
This package is concerned with sum of squares decompositions in group rings of finitely presented groups.
Please have a look into [test](https://github.com/kalmarek/GroupRings.jl/blob/master/test/runtests.jl) directory to see how to use this package. For an example applications have a look at our papers:
[1703.09680](https://arxiv.org/abs/1703.09680), [1712.07167](https://arxiv.org/abs/1712.07167) and [1812.03456](https://arxiv.org/abs/1812.03456).
Please have a look into e.g. this [test](https://github.com/kalmarek/PropertyT.jl/blob/master/test/1712.07167.jl#L87) to see how this package can be used to prove Kazdhan Property (T) for a finitely presented group. For an example applications have a look at our papers:
* M. Kaluba and P.W. Nowak _Certifying numerical estimates for spectral gaps_ [1703.09680](https://arxiv.org/abs/1703.09680)
* M. Kaluba, P.W. Nowak and N. Ozawa *$Aut(F₅)$ has property (T)* [1712.07167](https://arxiv.org/abs/1712.07167), and
* M. Kaluba, D. Kielak and P.W. Nowak *On property (T) for $Aut(Fₙ)$ and $SLₙ(Z)$* [1812.03456](https://arxiv.org/abs/1812.03456).
The package depends on
* [AbstractAlgebra](https://github.com/Nemocas/AbstractAlgebra.jl),
* [Groups](https://github.com/kalmarek/Groups.jl)
* [GroupRings](https://github.com/kalmarek/GroupRings.jl)
* [JuMP](https://github.com/JuliaOpt/JuMP.jl)
* [scs](https://github.com/JuliaOpt/SCS.jl) [solver](https://github.com/cvxgrp/scs)
* [`Groups.jl`](https://github.com/kalmarek/Groups.jl) for computations with finitely presented groups,
* [`SymbolicWedderburn.jl`](https://github.com/kalmarek/SymbolicWedderburn.jl) for symmetrizing the sum of squares relaxations of positivity problems,
* [`JuMP.jl`](https://github.com/JuliaOpt/JuMP.jl) for formulating the optimization problems, and
* [`SCS.jl`](https://github.com/JuliaOpt/SCS.jl) wrapper for the [`scs` solver](https://github.com/cvxgrp/scs), or
* [`COSMO.jl`](https://github.com/oxfordcontrol/COSMO.jl) solver to solve the problems.
Certification of the results is done via `ℓ₁`-convexity of the sum-of-squares cone and our knowledge of its interior points. The certified computations use
* [`IntervalArithmetic.jl`](https://github.com/JuliaIntervals/IntervalArithmetic.jl)