1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-26 00:55:27 +01:00

update README with the correct links/references

This commit is contained in:
Marek Kaluba 2022-11-08 22:59:54 +01:00
parent 2b20a5bb34
commit 697cecb286
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15

View File

@ -1,15 +1,20 @@
# Property(T) # Property(T)
[![Build Status](https://travis-ci.org/kalmarek/PropertyT.jl.svg?branch=master)](https://travis-ci.org/kalmarek/PropertyT.jl) [![CI](https://github.com/kalmarek/PropertyT.jl/actions/workflows/ci.yml/badge.svg)](https://github.com/kalmarek/PropertyT.jl/actions/workflows/ci.yml)
[![codecov](https://codecov.io/gh/kalmarek/PropertyT.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/kalmarek/PropertyT.jl) [![codecov](https://codecov.io/gh/kalmarek/PropertyT.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/kalmarek/PropertyT.jl)
This package is concerned with sum of squares decompositions in group rings of finitely presented groups. This package is concerned with sum of squares decompositions in group rings of finitely presented groups.
Please have a look into [test](https://github.com/kalmarek/GroupRings.jl/blob/master/test/runtests.jl) directory to see how to use this package. For an example applications have a look at our papers: Please have a look into e.g. this [test](https://github.com/kalmarek/PropertyT.jl/blob/master/test/1712.07167.jl#L87) to see how this package can be used to prove Kazdhan Property (T) for a finitely presented group. For an example applications have a look at our papers:
[1703.09680](https://arxiv.org/abs/1703.09680), [1712.07167](https://arxiv.org/abs/1712.07167) and [1812.03456](https://arxiv.org/abs/1812.03456). * M. Kaluba and P.W. Nowak _Certifying numerical estimates for spectral gaps_ [1703.09680](https://arxiv.org/abs/1703.09680)
* M. Kaluba, P.W. Nowak and N. Ozawa *$Aut(F₅)$ has property (T)* [1712.07167](https://arxiv.org/abs/1712.07167), and
* M. Kaluba, D. Kielak and P.W. Nowak *On property (T) for $Aut(Fₙ)$ and $SLₙ(Z)$* [1812.03456](https://arxiv.org/abs/1812.03456).
The package depends on The package depends on
* [AbstractAlgebra](https://github.com/Nemocas/AbstractAlgebra.jl), * [`Groups.jl`](https://github.com/kalmarek/Groups.jl) for computations with finitely presented groups,
* [Groups](https://github.com/kalmarek/Groups.jl) * [`SymbolicWedderburn.jl`](https://github.com/kalmarek/SymbolicWedderburn.jl) for symmetrizing the sum of squares relaxations of positivity problems,
* [GroupRings](https://github.com/kalmarek/GroupRings.jl) * [`JuMP.jl`](https://github.com/JuliaOpt/JuMP.jl) for formulating the optimization problems, and
* [JuMP](https://github.com/JuliaOpt/JuMP.jl) * [`SCS.jl`](https://github.com/JuliaOpt/SCS.jl) wrapper for the [`scs` solver](https://github.com/cvxgrp/scs), or
* [scs](https://github.com/JuliaOpt/SCS.jl) [solver](https://github.com/cvxgrp/scs) * [`COSMO.jl`](https://github.com/oxfordcontrol/COSMO.jl) solver to solve the problems.
Certification of the results is done via `ℓ₁`-convexity of the sum-of-squares cone and our knowledge of its interior points. The certified computations use
* [`IntervalArithmetic.jl`](https://github.com/JuliaIntervals/IntervalArithmetic.jl)