mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-23 08:15:29 +01:00
adaptation to changes in GroupRings (not tested, not working)
This commit is contained in:
parent
e93ec0c422
commit
70b98ece5f
@ -42,7 +42,7 @@ function pmΔfilenames(name::String)
|
||||
end
|
||||
prefix = name
|
||||
pm_filename = joinpath(prefix, "product_matrix.jld")
|
||||
Δ_coeff_filename = joinpath(prefix, "delta.coefficients.jld")
|
||||
Δ_coeff_filename = joinpath(prefix, "delta.coeffs.jld")
|
||||
return pm_filename, Δ_coeff_filename
|
||||
end
|
||||
|
||||
@ -64,7 +64,7 @@ function ΔandSDPconstraints(name::String)
|
||||
info(logger, "Loading precomputed pm, Δ, sdp_constraints...")
|
||||
product_matrix = load(pm_fname, "pm")
|
||||
L = load(Δ_fname, "Δ")[:, 1]
|
||||
Δ = GroupAlgebraElement(L, Array{Int,2}(product_matrix))
|
||||
Δ = GroupRingElem(L, Array{Int,2}(product_matrix))
|
||||
sdp_constraints = constraints_from_pm(product_matrix)
|
||||
else
|
||||
throw(ArgumentError("You need to precompute pm and Δ to load it!"))
|
||||
@ -84,7 +84,7 @@ function ΔandSDPconstraints(name::String, generating_set::Function, radius::Int
|
||||
info(logger, timed_msg(t))
|
||||
|
||||
save(pm_fname, "pm", Δ.product_matrix)
|
||||
save(Δ_fname, "Δ", Δ.coefficients)
|
||||
save(Δ_fname, "Δ", Δ.coeffs)
|
||||
return Δ, sdp_constraints
|
||||
else
|
||||
error(logger, err)
|
||||
@ -151,7 +151,7 @@ function λandP(name::String, opts...)
|
||||
end
|
||||
end
|
||||
|
||||
function compute_λandP(sdp_constraints, Δ::GroupAlgebraElement, solver::AbstractMathProgSolver, upper_bound=Inf)
|
||||
function compute_λandP(sdp_constraints, Δ::GroupRingElem, solver::AbstractMathProgSolver, upper_bound=Inf)
|
||||
|
||||
t = @timed SDP_problem = create_SDP_problem(sdp_constraints, Δ; upper_bound=upper_bound)
|
||||
info(logger, timed_msg(t))
|
||||
@ -185,7 +185,7 @@ function check_property_T(name::String, generating_set::Function,
|
||||
|
||||
Δ, sdp_constraints = ΔandSDPconstraints(name, generating_set, radius)
|
||||
|
||||
S = countnz(Δ.coefficients) - 1
|
||||
S = countnz(Δ.coeffs) - 1
|
||||
info(logger, "|S| = $S")
|
||||
info(logger, "length(Δ) = $(length(Δ))")
|
||||
info(logger, "size(Δ.product_matrix) = $(size(Δ.product_matrix))")
|
||||
|
@ -6,23 +6,21 @@ ValidatedNumerics.setrounding(Interval, :correct)
|
||||
ValidatedNumerics.setformat(:standard)
|
||||
# setprecision(Interval, 53) # slightly faster than 256
|
||||
|
||||
function EOI{T<:Number}(Δ::GroupAlgebraElement{T}, λ::T)
|
||||
function EOI{T<:Number}(Δ::GroupRingElem{T}, λ::T)
|
||||
return Δ*Δ - λ*Δ
|
||||
end
|
||||
|
||||
function algebra_square(vector, elt)
|
||||
zzz = zeros(eltype(vector), elt.coefficients)
|
||||
zzz[1:length(vector)] = vector
|
||||
# new_base_elt = GroupAlgebraElement(zzz, elt.product_matrix)
|
||||
# return (new_base_elt*new_base_elt).coefficients
|
||||
return GroupAlgebras.algebra_multiplication(zzz, zzz, elt.product_matrix)
|
||||
function algebra_square(vect, elt)
|
||||
zzz = zeros(eltype(vect), elt.coeffs)
|
||||
zzz[1:length(vect)] = vect
|
||||
return GroupAlgebras.algebra_multiplication(zzz, zzz, parent(elt).pm)
|
||||
end
|
||||
|
||||
function compute_SOS(sqrt_matrix, elt)
|
||||
n = size(sqrt_matrix,2)
|
||||
T = eltype(sqrt_matrix)
|
||||
|
||||
# result = zeros(T, length(elt.coefficients))
|
||||
# result = zeros(T, length(elt.coeffs))
|
||||
# for i in 1:n
|
||||
# result += algebra_square(sqrt_matrix[:,i], elt)
|
||||
# end
|
||||
@ -30,8 +28,7 @@ function compute_SOS(sqrt_matrix, elt)
|
||||
result = @parallel (+) for i in 1:n
|
||||
PropertyT.algebra_square(sqrt_matrix[:,i], elt)
|
||||
end
|
||||
|
||||
return GroupAlgebraElement(result, elt.product_matrix)
|
||||
return GroupRingElem(result, parent(elt))
|
||||
end
|
||||
|
||||
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
|
||||
@ -52,7 +49,7 @@ function (±){T<:Number}(X::AbstractArray{T}, tol::Real)
|
||||
return r.(X)
|
||||
end
|
||||
|
||||
(±)(X::GroupAlgebraElement, tol::Real) = GroupAlgebraElement(X.coefficients ± tol, X.product_matrix)
|
||||
(±)(X::GroupRingElem, tol::Real) = GroupRingElem(X.coeffs ± tol, parent(X))
|
||||
|
||||
function Base.rationalize{T<:Integer, S<:Real}(::Type{T},
|
||||
X::AbstractArray{S}; tol::Real=eps(eltype(X)))
|
||||
@ -62,7 +59,7 @@ end
|
||||
|
||||
ℚ(x, tol::Real) = rationalize(BigInt, x, tol=tol)
|
||||
|
||||
function distance_to_cone{T<:Rational}(λ::T, sqrt_matrix::Array{T,2}, Δ::GroupAlgebraElement{T})
|
||||
function distance_to_cone{T<:Rational}(λ::T, sqrt_matrix::Array{T,2}, Δ::GroupRingElem{T})
|
||||
SOS = compute_SOS(sqrt_matrix, Δ)
|
||||
|
||||
SOS_diff = EOI(Δ, λ) - SOS
|
||||
@ -80,11 +77,11 @@ function distance_to_cone{T<:Rational}(λ::T, sqrt_matrix::Array{T,2}, Δ::Group
|
||||
return distance_to_cone
|
||||
end
|
||||
|
||||
function distance_to_cone{T<:Rational, S<:Interval}(λ::T, sqrt_matrix::Array{S,2}, Δ::GroupAlgebraElement{T})
|
||||
function distance_to_cone{T<:Rational, S<:Interval}(λ::T, sqrt_matrix::Array{S,2}, Δ::GroupRingElem{T})
|
||||
SOS = compute_SOS(sqrt_matrix, Δ)
|
||||
info(logger, "ɛ(∑ξᵢ*ξᵢ) ∈ $(GroupAlgebras.ɛ(SOS))")
|
||||
λⁱⁿᵗ = @interval(λ)
|
||||
Δⁱⁿᵗ = GroupAlgebraElement([@interval(c) for c in Δ.coefficients], Δ.product_matrix)
|
||||
Δⁱⁿᵗ = GroupRingElem([@interval(c) for c in Δ.coeffs], parent(Δ).pm)
|
||||
SOS_diff = EOI(Δⁱⁿᵗ, λⁱⁿᵗ) - SOS
|
||||
eoi_SOS_L₁_dist = norm(SOS_diff,1)
|
||||
|
||||
@ -98,7 +95,7 @@ function distance_to_cone{T<:Rational, S<:Interval}(λ::T, sqrt_matrix::Array{S,
|
||||
return distance_to_cone
|
||||
end
|
||||
|
||||
function distance_to_cone{T<:AbstractFloat}(λ::T, sqrt_matrix::Array{T,2}, Δ::GroupAlgebraElement{T})
|
||||
function distance_to_cone{T<:AbstractFloat}(λ::T, sqrt_matrix::Array{T,2}, Δ::GroupRingElem{T})
|
||||
SOS = compute_SOS(sqrt_matrix, Δ)
|
||||
|
||||
SOS_diff = EOI(Δ, λ) - SOS
|
||||
@ -113,7 +110,7 @@ function distance_to_cone{T<:AbstractFloat}(λ::T, sqrt_matrix::Array{T,2}, Δ::
|
||||
return distance_to_cone
|
||||
end
|
||||
|
||||
function check_distance_to_positive_cone(Δ::GroupAlgebraElement, λ, P;
|
||||
function check_distance_to_positive_cone(Δ::GroupRingElem, λ, P;
|
||||
tol=1e-7, rational=false)
|
||||
|
||||
isapprox(eigvals(P), abs(eigvals(P)), atol=tol) ||
|
||||
|
@ -53,8 +53,8 @@ function laplacian_coeff(S, basis)
|
||||
end
|
||||
|
||||
|
||||
function create_SDP_problem(matrix_constraints, Δ::GroupAlgebraElement; upper_bound=Inf)
|
||||
N = size(Δ.product_matrix,1)
|
||||
function create_SDP_problem(matrix_constraints, Δ::GroupRingElem; upper_bound=Inf)
|
||||
N = size(parent(Δ).pm, 1)
|
||||
Δ² = Δ*Δ
|
||||
@assert length(Δ) == length(matrix_constraints)
|
||||
m = JuMP.Model();
|
||||
@ -68,7 +68,7 @@ function create_SDP_problem(matrix_constraints, Δ::GroupAlgebraElement; upper_b
|
||||
JuMP.@variable(m, λ >= 0)
|
||||
end
|
||||
|
||||
for (pairs, δ², δ) in zip(matrix_constraints, Δ².coefficients, Δ.coefficients)
|
||||
for (pairs, δ², δ) in zip(matrix_constraints, Δ².coeffs, Δ.coeffs)
|
||||
JuMP.@constraint(m, sum(P[i,j] for (i,j) in pairs) == δ² - λ*δ)
|
||||
end
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user