1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-14 14:15:28 +01:00

Rename coordinates to coefficients

This commit is contained in:
kalmar 2016-12-23 00:51:06 +01:00
parent 2476101af3
commit 723957f415
2 changed files with 24 additions and 25 deletions

View File

@ -8,16 +8,16 @@ export GroupAlgebraElement
immutable GroupAlgebraElement{T<:Number}
coordinates::Vector{T}
coefficients::Vector{T}
product_matrix::Array{Int,2}
# basis::Array{Any,1}
function GroupAlgebraElement(coordinates::Vector{T},
function GroupAlgebraElement(coefficients::Vector{T},
product_matrix::Array{Int,2})
size(product_matrix, 1) == size(product_matrix, 2) ||
throw(ArgumentError("Product matrix has to be square"))
new(coordinates, product_matrix)
new(coefficients, product_matrix)
end
end
@ -25,10 +25,10 @@ end
GroupAlgebraElement{T}(c::Vector{T},pm) = GroupAlgebraElement{T}(c,pm)
convert{T<:Number}(::Type{T}, X::GroupAlgebraElement) =
GroupAlgebraElement(convert(Vector{T}, X.coordinates), X.product_matrix)
GroupAlgebraElement(convert(Vector{T}, X.coefficients), X.product_matrix)
show{T}(io::IO, X::GroupAlgebraElement{T}) = print(io,
"Element of Group Algebra over ", T, "of length $(length(X)):\n", X.coordinates)
"Element of Group Algebra over ", T, "of length $(length(X)):\n", X.coefficients)
function isequal{T, S}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{S})
@ -36,7 +36,7 @@ function isequal{T, S}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{S})
warn("Comparing elements with different coefficients Rings!")
end
X.product_matrix == Y.product_matrix || return false
X.coordinates == Y.coordinates || return false
X.coefficients == Y.coefficients || return false
return true
end
@ -45,28 +45,28 @@ end
function add{T<:Number}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{T})
X.product_matrix == Y.product_matrix || throw(ArgumentError(
"Elements don't seem to belong to the same Group Algebra!"))
return GroupAlgebraElement(X.coordinates+Y.coordinates, X.product_matrix)
return GroupAlgebraElement(X.coefficients+Y.coefficients, X.product_matrix)
end
function add{T<:Number, S<:Number}(X::GroupAlgebraElement{T},
Y::GroupAlgebraElement{S})
warn("Adding elements with different base rings!")
return GroupAlgebraElement(+(promote(X.coordinates, Y.coordinates)...),
return GroupAlgebraElement(+(promote(X.coefficients, Y.coefficients)...),
X.product_matrix)
end
(+)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,Y)
(-)(X::GroupAlgebraElement) = GroupAlgebraElement(-X.coordinates, X.product_matrix)
(-)(X::GroupAlgebraElement) = GroupAlgebraElement(-X.coefficients, X.product_matrix)
(-)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,-Y)
function group_star_multiplication{T<:Number}(X::GroupAlgebraElement{T},
Y::GroupAlgebraElement{T})
X.product_matrix == Y.product_matrix || ArgumentError(
"Elements don't seem to belong to the same Group Algebra!")
result = zeros(X.coordinates)
for (i,x) in enumerate(X.coordinates)
result = zeros(X.coefficients)
for (i,x) in enumerate(X.coefficients)
if x != 0
for (j,y) in enumerate(Y.coordinates)
for (j,y) in enumerate(Y.coefficients)
if y != 0
index = X.product_matrix[i,j]
if index == 0
@ -92,25 +92,24 @@ end
Y::GroupAlgebraElement{S}) = group_star_multiplication(X,Y);
(*){T<:Number}(a::T, X::GroupAlgebraElement{T}) = GroupAlgebraElement(
a*X.coordinates, X.product_matrix)
a*X.coefficients, X.product_matrix)
function scalar_multiplication{T<:Number, S<:Number}(a::T,
X::GroupAlgebraElement{S})
if T!=S
warn("Scalars and coefficients ring are not the same! Trying to promote...")
end
return GroupAlgebraElement(a*X.coordinates, X.product_matrix)
promote_type(T,S) == S || warn("Scalar and coefficients are in different rings! Promoting result to $(promote_type(T,S))")
return GroupAlgebraElement(a*X.coefficients, X.product_matrix)
end
(*){T<:Number}(a::T,X::GroupAlgebraElement) = scalar_multiplication(a, X)
//{T<:Rational, S<:Rational}(X::GroupAlgebraElement{T}, a::S) =
GroupAlgebraElement(X.coordinates//a, X.product_matrix)
GroupAlgebraElement(X.coefficients//a, X.product_matrix)
//{T<:Rational, S<:Integer}(X::GroupAlgebraElement{T}, a::S) =
X//convert(T,a)
length(X::GroupAlgebraElement) = length(X.coordinates)
size(X::GroupAlgebraElement) = size(X.coordinates)
norm(X::GroupAlgebraElement, p=2) = norm(X.coordinates, p)
length(X::GroupAlgebraElement) = length(X.coefficients)
size(X::GroupAlgebraElement) = size(X.coefficients)
norm(X::GroupAlgebraElement, p=2) = norm(X.coefficients, p)
end

View File

@ -81,20 +81,20 @@ function create_SDP_problem(matrix_constraints,
@variable(m, κ >= 0.0)
@objective(m, Max, κ)
for (pairs, δ², δ) in zip(matrix_constraints, Δ².coordinates, Δ.coordinates)
for (pairs, δ², δ) in zip(matrix_constraints, Δ².coefficients, Δ.coefficients)
@constraint(m, sum(A[i,j] for (i,j) in pairs) == δ² - κ*δ)
end
return m
end
function resulting_SOS{T<:Number}(sqrt_matrix::Array{T,2}, elt::GroupAlgebraElement{T})
result = zeros(elt.coordinates)
zzz = zeros(elt.coordinates)
result = zeros(elt.coefficients)
zzz = zeros(elt.coefficients)
L = size(sqrt_matrix,2)
for i in 1:L
zzz[1:L] = view(sqrt_matrix, :,i)
new_base = GroupAlgebraElement(zzz, elt.product_matrix)
result += (new_base*new_base).coordinates
result += (new_base*new_base).coefficients
end
return GroupAlgebraElement{T}(result, elt.product_matrix)
end