1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-29 09:45:27 +01:00

update for changes in AbstractAlgebra, Groups, GroupRings

* MatSpaces are no longer Rings, they are modules (that's a hack, I 
know)
* DirectProduct → DirectPower
* full → GroupRings.dense
* constructors of GroupRings require explicit basis
This commit is contained in:
kalmarek 2019-01-11 06:37:24 +01:00
parent 0614bf268d
commit 76b8fed6b1
4 changed files with 17 additions and 14 deletions

View File

@ -23,7 +23,7 @@ struct DirectProdCharacter{N, T<:AbstractCharacter} <: AbstractCharacter
chars::NTuple{N, T}
end
function (chi::DirectProdCharacter)(g::DirectProductGroupElem)
function (chi::DirectProdCharacter)(g::DirectPowerGroupElem)
res = 1
for (χ, elt) in zip(chi.chars, g.elts)
res *= χ(elt)
@ -57,8 +57,8 @@ end
characters(G::Generic.PermGroup) = (PermCharacter(p) for p in AllParts(G.n))
function characters(G::DirectProductGroup)
nfold_chars = Iterators.repeated(characters(G.group), G.n)
function characters(G::DirectPowerGroup{N}) where N
nfold_chars = Iterators.repeated(characters(G.group), N)
return (DirectProdCharacter(idx) for idx in Iterators.product(nfold_chars...))
end
@ -164,17 +164,19 @@ function rankOne_projections(RBn::GroupRing{G}, T::Type=Rational{Int}) where {G<
Bn = RBn.group
N = Bn.P.n
# projections as elements of the group rings RSₙ
Sn_rankOnePr = [rankOne_projections(GroupRing(PermutationGroup(i))) for i in typeof(N)(1):N]
Sn_rankOnePr = [rankOne_projections(
GroupRing(PermGroup(i), collect(PermGroup(i))))
for i in typeof(N)(1):N]
# embedding into group ring of BN
RN = GroupRing(Bn.N)
RN = GroupRing(Bn.N, collect(Bn.N))
sign, id = collect(characters(Bn.N.group))
# Bn.N = (Z/2Z)ⁿ characters corresponding to the first k coordinates:
BnN_orbits = Dict(i => orbit_selector(N, i, sign, id) for i in 0:N)
Q = Dict(i => RBn(g -> Bn(g), central_projection(RN, BnN_orbits[i], T)) for i in 0:N)
Q = Dict(key => full(val) for (key, val) in Q)
Q = Dict(key => GroupRings.dense(val) for (key, val) in Q)
all_projs = [Q[0]*RBn(g->Bn(g), p) for p in Sn_rankOnePr[N]]

View File

@ -28,7 +28,7 @@ function augIdproj(Q::AbstractMatrix{T}) where {T<:Real}
return result
end
function augIdproj(::Interval, Q::AbstractMatrix{T}) where {T<:Real}
function augIdproj(::Type{Interval}, Q::AbstractMatrix{T}) where {T<:Real}
result = zeros(Interval{T}, size(Q))
l = size(Q, 2)
Threads.@threads for j in 1:l

View File

@ -13,7 +13,7 @@ function spLaplacian(RG::GroupRing, S, T::Type=Float64)
return result
end
function spLaplacian(RG::GroupRing{R}, S, T::Type=Float64) where {R<:Ring}
function spLaplacian(RG::GroupRing, S::Vector{REl}, T::Type=Float64) where {REl<:AbstractAlgebra.ModuleElem}
result = RG(T)
result[one(RG.group)] = T(length(S))
for s in S
@ -22,7 +22,7 @@ function spLaplacian(RG::GroupRing{R}, S, T::Type=Float64) where {R<:Ring}
return result
end
function Laplacian(S::Vector{E}, radius) where E<:AbstractAlgebra.RingElem
function Laplacian(S::Vector{E}, radius) where E<:AbstractAlgebra.ModuleElem
R = parent(first(S))
return Laplacian(S, one(R), radius)
end
@ -37,10 +37,11 @@ function Laplacian(S, Id, radius)
@time E_R, sizes = Groups.generate_balls(S, Id, radius=2radius)
@info("Generated balls of sizes $sizes.")
@time pm = GroupRings.create_pm(E_R, GroupRings.reverse_dict(E_R), sizes[radius]; twisted=true)
@info("Creating product matrix...")
rdict = GroupRings.reverse_dict(E_R)
@time pm = GroupRings.create_pm(E_R, rdict, sizes[radius]; twisted=true)
RG = GroupRing(parent(Id), E_R, pm)
RG = GroupRing(parent(Id), E_R, rdict, pm)
Δ = spLaplacian(RG, S)
return Δ
end

View File

@ -17,8 +17,8 @@ function OrbitData(RG::GroupRing, autS::Group, verbose=true)
@assert sum(length(o) for o in orbs) == length(RG.basis)
verbose && @info("The action has $(length(orbs)) orbits")
@time autS_mps = Projections.rankOne_projections(GroupRing(autS))
verbose && @info("Projections in the Group Ring of AutS = $autS")
@time autS_mps = Projections.rankOne_projections(GroupRing(autS, collect(autS)))
verbose && @info("AutS-action matrix representatives")
@time preps = perm_reps(autS, RG.basis[1:size(RG.pm,1)], RG.basis_dict)
@ -55,7 +55,7 @@ end
function orbit_decomposition(G::Group, E::Vector, rdict=GroupRings.reverse_dict(E))
elts = collect(elements(G))
elts = collect(G)
tovisit = trues(size(E));
orbits = Vector{Vector{Int}}()
@ -139,7 +139,7 @@ function perm_repr(g::GroupElem, E::Vector, E_dict)
end
function perm_reps(G::Group, E::Vector, E_rdict=GroupRings.reverse_dict(E))
elts = collect(elements(G))
elts = collect(G)
l = length(elts)
preps = Vector{perm}(undef, l)