1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-23 08:15:29 +01:00

add orbit-related code

This commit is contained in:
kalmar 2017-06-22 14:12:35 +02:00
parent e21f97f541
commit 77121c32eb
3 changed files with 575 additions and 0 deletions

206
src/OrbitDecomposition.jl Normal file
View File

@ -0,0 +1,206 @@
push!(LOAD_PATH, "./")
using Nemo
using Groups
using GroupRings
using PropertyT
import Nemo.elements
using JLD
include("Projections.jl")
###############################################################################
#
# Iterator protocol for Nemo.FinField
#
###############################################################################
type FFEltsIter{T<:Nemo.FinField}
all::Int
field::T
function FFEltsIter(F::T)
return new(Int(characteristic(F)^degree(F)), F)
end
end
FFEltsIter{T<:Nemo.FinField}(F::T) = FFEltsIter{T}(F)
import Base: start, next, done, eltype, length
Base.start(A::FFEltsIter) = (zero(A.field), 0)
Base.next(A::FFEltsIter, state) = next_ffelem(state...)
Base.done(A::FFEltsIter, state) = state[2] >= A.all
Base.eltype(::Type{FFEltsIter}) = elem_type(A.field)
Base.length(A::FFEltsIter) = A.all
function next_ffelem(f::Nemo.FinFieldElem, c::Int)
if c == 0
return (f, (f, 1))
elseif c == 1
f = one(parent(f))
return (f, (f, 2))
else
f = gen(parent(f))*f
return (f, (f, c+1))
end
end
import Nemo.elements
elements(F::Nemo.FinField) = FFEltsIter(F)
###############################################################################
#
# Orbit stuff
#
###############################################################################
function orbit_decomposition(G::Nemo.Group, E::Vector, rdict=GroupRings.reverse_dict(E))
elts = collect(elements(G))
tovisit = trues(E);
orbits = Vector{Vector{Int}}()
for i in 1:endof(E)
if tovisit[i]
orbit = Vector{Int}()
a = E[i]
for g in elts
idx = rdict[g(a)]
tovisit[idx] = false
push!(orbit,idx)
end
push!(orbits, unique(orbit))
end
end
return orbits
end
function orbit_spvector(vect::AbstractVector, orbits)
orb_vector = spzeros(length(orbits))
for (i,o) in enumerate(orbits)
k = vect[collect(o)]
val = k[1]
@assert all(k .== val)
orb_vector[i] = val
end
return orb_vector
end
function orbit_constraint(constraints::Vector{Vector{Vector{Int64}}}, n)
result = spzeros(n,n)
for cnstr in constraints
for p in cnstr
result[p[2], p[1]] += 1.0
end
end
return 1/length(constraints)*result
end
###############################################################################
#
# Matrix- and C*-representations
#
###############################################################################
function matrix_repr(g::GroupElem, E, E_dict)
rep_matrix = spzeros(Int, length(E), length(E))
for (i,e) in enumerate(E)
j = E_dict[g(e)]
rep_matrix[i,j] = 1
end
return rep_matrix
end
function matrix_reps{T<:GroupElem}(G::Nemo.Group, S::Vector{T}, AutS::Nemo.Group, radius::Int)
Id = (isa(G, Nemo.Ring) ? one(G) : G())
E2, _ = Groups.generate_balls(S, Id, radius=radius)
Edict = GroupRings.reverse_dict(E2)
mreps = Dict(g=>matrix_repr(g, E2, Edict) for g in elements(AutS))
return mreps
end
function reconstruct_sol(mreps::Dict, Us::Vector, Ps::Vector, dims::Vector)
recP = zeros(size(Us[1],1), size(Us[1],1))
for g in keys(mreps)
for π in 1:endof(Us)
recP .+= dims[π] .* mreps[g]*transform(Us[π]', Ps[π])*mreps[inv(g)]
end
end
recP .*= 1/length(collect(keys(mreps)))
return recP
end
function Cstar_repr(x::GroupRingElem, mreps)
k = collect(keys(mreps))[1]
res = zeros(size(mreps[k])...)
for g in parent(x).basis
res .+= x[g]*mreps[g]
end
return res
end
function orthSVD(M::AbstractMatrix)
M = full(M)
fact = svdfact(M)
singv = fact[:S]
M_rank = sum(singv .> maximum(size(M))*eps(eltype(singv)))
return fact[:U][:,1:M_rank]
end
function compute_orbit_data{T<:GroupElem}(logger, name::String, G::Nemo.Group, S::Vector{T}, AutS; radius=2)
isdir(name) || mkdir(name)
info(logger, "Generating ball of radius $(2*radius)")
# TODO: Fix that by multiple dispatch?
Id = (isa(G, Nemo.Ring) ? one(G) : G())
@time E4, sizes = Groups.generate_balls(S, Id, radius=2*radius);
info(logger, "Balls of sizes $sizes.")
info(logger, "Reverse dict")
@time E_dict = GroupRings.reverse_dict(E4)
info(logger, "Product matrix")
@time pm = GroupRings.create_pm(E4, E_dict, sizes[radius], twisted=true)
RG = GroupRing(G, E4, E_dict, pm)
Δ = PropertyT.splaplacian(RG, S)
@assert GroupRings.augmentation(Δ) == 0
save(joinpath(name, "delta.jld"), "Δ", Δ.coeffs)
save(joinpath(name, "pm.jld"), "pm", pm)
info(logger, "Decomposing E into orbits of $(AutS)")
@time orbs = orbit_decomposition(AutS, E4, E_dict)
@assert sum(length(o) for o in orbs) == length(E4)
save(joinpath(name, "orbits.jld"), "orbits", orbs)
info(logger, "Action matrices")
E2 = E4[1:sizes[radius]]
@time AutS_mreps = Dict(g=>matrix_repr(g, E2, E_dict) for g in elements(AutS))
info(logger, "Projections")
@time AutS_mps = rankOne_projections(AutS);
@time π_E_projections = [Cstar_repr(p, AutS_mreps) for p in AutS_mps]
info(logger, "Uπs...")
@time Uπs = orthSVD.(π_E_projections)
multiplicities = size.(Uπs,2)
info(logger, "multiplicities = $multiplicities")
dimensions = [Int(p[AutS()]*Int(order(AutS))) for p in AutS_mps];
info(logger, "dimensions = $dimensions")
@assert dot(multiplicities, dimensions) == sizes[radius]
save(joinpath(name, "U_pis.jld"), "Uπs", Uπs, "dims", dimensions)
return 0
end

135
src/Projections.jl Normal file
View File

@ -0,0 +1,135 @@
using DirectProducts
using WreathProducts
###############################################################################
#
# Characters of PermutationGroup
#
###############################################################################
function chars(G::PermutationGroup)
permtype_unsorted(σ::Nemo.perm) = [length(c) for c in cycles(σ)]
permtype(σ::Nemo.perm) = sort(permtype_unsorted(σ))
χ_id(σ::Nemo.perm) = 1
χ_sgn(σ::Nemo.perm) = (-1)^parity(σ)
function χ_reg(σ::Nemo.perm)
fixed_points = countnz([(x == y? 1 : 0) for (x,y) in enumerate(σ.d)])
return fixed_points - 1
end
χ_regsgn(σ::Nemo.perm) = (-1)^parity(σ)*χ_reg(σ)
function χ_regviaS3(σ::Nemo.perm)
@assert parent(σ).n == 4
t = permtype(σ)
if t == [1,1,1,1]
result = 2
elseif t == [2,2]
result = 2
elseif t == [1,3]
result = -1
else
result = 0
end
return result
end
chars = [χ_id, χ_sgn, χ_regviaS3, χ_reg, χ_regsgn]
if G.n == 1
return chars[1:1]
elseif G.n == 2
return chars[1:2]
elseif G.n == 3
return [chars[1:2]..., chars[4]]
elseif G.n == 4
return chars[1:5]
else
throw("Characters for $G unknown!")
end
end
###############################################################################
#
# Character of DirectProducts
#
###############################################################################
function epsilon(i, g::DirectProducts.DirectProductGroupElem)
return reduce(*, 1, ((-1)^isone(g.elts[j]) for j in 1:i))
end
###############################################################################
#
# Projections
#
###############################################################################
function central_projection(RG::GroupRing, char::Function, T::Type=Rational{Int})
result = RG(T)
for g in RG.basis
result[g] = char(inv(g))
end
return convert(T, char(RG.group())//Int(order(RG.group))*result)
end
function rankOne_projections(G::PermutationGroup, T::Type=Rational{Int})
RG = GroupRing(G)
projections = [central_projection(RG, χ, T) for χ in chars(G)]
if G.n == 1 || G.n == 2
return projections
elseif G.n == 3
rankone_projs = [
projections[1],
projections[2],
1//2*(one(RG) - RG(RG.group([2,1,3])))*projections[3]
]
return rankone_projs
elseif G.n == 4
rankone_projs = [
projections[1],
projections[2],
1//2*(one(RG) - RG(RG.group([2,1,3,4])))*projections[3],
1//2*(one(RG) - RG(RG.group([2,1,3,4])))*projections[4],
1//2*(one(RG) + RG(RG.group([2,1,3,4])))*projections[5]]
return rankone_projs
else
throw("Rank-one projections for $G unknown!")
end
end
function rankOne_projections(BN::WreathProducts.WreathProduct, T::Type=Rational{Int})
N = BN.P.n
# projections as elements of the group rings RSₙ
SNprojs_nc = [rankOne_projections(PermutationGroup(i), T) for i in 1:N]
# embedding into group ring of BN
RBN = GroupRing(BN)
RFFFF_projs = [central_projection(GroupRing(BN.N), g->epsilon(i,g), T)
for i in 0:BN.P.n]
Qs = [RBN(q, g -> BN(g)) for q in RFFFF_projs]
function incl(k::Int, g::perm, WP::WreathProduct=BN)
@assert length(g.d) + k <= WP.P.n
arr = [1:k; g.d .+ k; (length(g.d)+k+1):WP.P.n]
return WP(WP.P(arr))
end
all_projs=[Qs[1]*RBN(p, g-> incl(0,g)) for p in SNprojs_nc[N]]
for i in 1:N-1
Sk_first = [RBN(p, g->incl(0,g)) for p in SNprojs_nc[i]]
Sk_last = [RBN(p, g->incl(i,g)) for p in SNprojs_nc[N-i]]
append!(all_projs,
[Qs[i+1]*p1*p2 for (p1,p2) in Base.product(Sk_first,Sk_last)])
end
append!(all_projs, [Qs[N+1]*RBN(p, g-> incl(0,g)) for p in SNprojs_nc[N]])
return all_projs
end

234
src/oPropertyT.jl Normal file
View File

@ -0,0 +1,234 @@
using JLD
using JuMP
using SCS
using GroupRings
using PropertyT
using ValidatedNumerics
using ArgParse
import Nemo: Group, GroupElem
immutable Settings
name::String
N::Int
G::Group
S::Vector
AutS::Group
radius::Int
solver::SCSSolver
upper_bound::Float64
tol::Float64
end
immutable OrbitData
name::String
Us::Vector
Ps::Vector{Array{JuMP.Variable,2}}
cnstr::Vector
laplacian::Vector
laplacianSq::Vector
dims::Vector{Int}
end
include("OrbitDecomposition.jl")
function sparsify{T}(U::Array{T}, eps=eps(T))
n = rank(U)
W = deepcopy(U)
W[abs.(W) .< eps] = zero(T)
if rank(W) != n
warn("Sparsification would decrease the rank!")
W = U
end
W = sparse(W)
dropzeros!(W)
return W
end
function sparsify!{T}(U::SparseMatrixCSC{T}, eps=eps(T))
U[abs.(U) .< eps] = zero(T)
dropzeros!(U)
return U
end
sparsify{T}(U::SparseMatrixCSC{T}, eps=eps(T)) = sparsify!(deepcopy(U), eps)
function init_model(Uπs)
m = JuMP.Model();
l = size(Uπs,1)
P = Vector{Array{JuMP.Variable,2}}(l)
for k in 1:l
s = size(Uπs[k],2)
P[k] = JuMP.@variable(m, [i=1:s, j=1:s])
JuMP.@SDconstraint(m, P[k] >= 0.0)
end
JuMP.@variable(m, λ >= 0.0)
JuMP.@objective(m, Max, λ)
return m, P
end
function init_OrbitData(name::String)
splap = load(joinpath(name, "delta.jld"), "Δ");
pm = load(joinpath(name, "pm.jld"), "pm");
cnstr = PropertyT.constraints_from_pm(pm);
splap² = GroupRings.mul(splap, splap, pm);
Uπs = load(joinpath(name, "U_pis.jld"), "Uπs");
# Uπs = sparsify.(Uπs);
#dimensions of the corresponding πs:
dims = load(joinpath(name, "U_pis.jld"), "dims")
m, P = init_model(Uπs);
orbits = load(joinpath(name, "orbits.jld"), "orbits");
n = size(Uπs[1],1)
orb_spcnstrm = [orbit_constraint(cnstr[collect(orb)], n) for orb in orbits]
orb_splap = orbit_spvector(splap, orbits)
orb_splap² = orbit_spvector(splap², orbits)
orbData = OrbitData(name, Uπs, P, orb_spcnstrm, orb_splap, orb_splap², dims);
# orbData = OrbitData(name, Uπs, P, orb_spcnstrm, splap, splap², dims);
return m, orbData
end
function transform(U::AbstractArray, V::AbstractArray; sparse=false)
w = U'*V*U
sparse && sparsify!(w)
return w
end
A(data::OrbitData, π, t) = data.dims[π]*transform(data.Us[π], data.cnstr[t])
function constrLHS(m::JuMP.Model, data::OrbitData, t)
l = endof(data.Us)
lhs = @expression(m, sum(vecdot(A(data, π, t), data.Ps[π]) for π in 1:l))
return lhs
end
function addconstraints!(m::JuMP.Model, data::OrbitData, l::Int=length(data.laplacian); var::Symbol = )
λ = m[var]
# orbits = load(joinpath(data.name, "orbits.jld"), "orbits");
# locate(t, orb=orbits) = findfirst(x->t in x, orb)
for t in 1:l
# lhs = constrLHS(m, data, locate(t))
lhs = constrLHS(m, data, t)
d, = data.laplacian[t], data.laplacianSq[t]
if lhs == zero(lhs)
if d == 0 && == 0
info("Detected empty constraint")
continue
else
warn("Adding unsatisfiable constraint!")
end
end
JuMP.@constraint(m, lhs == - λ*d)
end
end
function create_SDP_problem(name::String; upper_bound=Inf)
info(PropertyT.logger, "Loading orbit data....")
t = @timed SDP_problem, orb_data = init_OrbitData(name);
info(PropertyT.logger, PropertyT.timed_msg(t))
if upper_bound < Inf
λ = JuMP.getvariable(SDP_problem, )
JuMP.@constraint(SDP_problem, λ <= upper_bound)
end
info(PropertyT.logger, "Adding constraints... ")
t = @timed addconstraints!(SDP_problem, orb_data)
info(PropertyT.logger, PropertyT.timed_msg(t))
return SDP_problem, orb_data
end
function λandP(m::JuMP.Model, data::OrbitData)
varλ = m[]
varP = data.Ps
λ, Ps = PropertyT.λandP(data.name, m, varλ, varP)
return λ, Ps
end
function λandP(m::JuMP.Model, data::OrbitData, sett::Settings)
info(PropertyT.logger, "Solving SDP problem...")
λ, Ps = λandP(m, data)
info(PropertyT.logger, "Reconstructing P...")
mreps = matrix_reps(sett.G, sett.S, sett.AutS, sett.radius)
recP = reconstruct_sol(mreps, data.Us, Ps, data.dims)
fname = PropertyT.λSDPfilenames(data.name)[2]
save(fname, "origP", Ps, "P", recP)
return λ, recP
end
function init_orbit_data(logger, sett::Settings; radius=2)
ex(fname) = isfile(joinpath(sett.name, fname))
files_exists = ex.(["delta.jld", "pm.jld", "U_pis.jld", "orbits.jld"])
if !all(files_exists)
compute_orbit_data(logger, sett.name, sett.G, sett.S, sett.AutS, radius=radius)
end
return 0
end
function orbit_check_propertyT(logger, sett::Settings)
init_orbit_data(logger, sett, radius=sett.radius)
Δ = PropertyT.ΔandSDPconstraints(sett.name, sett.G)[1]
fnames = PropertyT.λSDPfilenames(sett.name)
if all(isfile.(fnames))
λ, P = PropertyT.λandP(sett.name)
else
info(logger, "Creating SDP problem...")
SDP_problem, orb_data = create_SDP_problem(sett.name, upper_bound=sett.upper_bound)
JuMP.setsolver(SDP_problem, sett.solver)
λ, P = λandP(SDP_problem, orb_data, sett)
end
info(logger, "λ = ")
info(logger, "sum(P) = $(sum(P))")
info(logger, "maximum(P) = $(maximum(P))")
info(logger, "minimum(P) = $(minimum(P))")
if λ > 0
isapprox(eigvals(P), abs(eigvals(P)), atol=sett.tol) ||
warn("The solution matrix doesn't seem to be positive definite!")
# @assert P == Symmetric(P)
Q = real(sqrtm(Symmetric(P)))
sgap = PropertyT.check_distance_to_positive_cone(Δ, λ, Q, 2*sett.radius, tol=sett.tol, rational=false)
if isa(sgap, Interval)
sgap = sgap.lo
end
if sgap > 0
info(logger, "λ ≥ $(Float64(trunc(sgap,12)))")
Kazhdan_κ = PropertyT.Kazhdan_from_sgap(sgap, length(sett.S))
Kazhdan_κ = Float64(trunc(Kazhdan_κ, 12))
info(logger, "κ($(sett.name), S) ≥ $Kazhdan_κ: Group HAS property (T)!")
return true
else
sgap = Float64(trunc(sgap, 12))
info(logger, "λ($(sett.name), S) ≥ $sgap: Group may NOT HAVE property (T)!")
return false
end
end
info(logger, "κ($(sett.name), S) ≥ < 0: Tells us nothing about property (T)")
return false
end