1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-23 08:15:29 +01:00

Merge branch 'AutF4' of git.wmi.amu.edu.pl:kalmar/PropertyT.jl into AutF4

# Conflicts:
#	src/PropertyT.jl
#	src/sdps.jl
This commit is contained in:
kalmar 2017-06-06 11:54:24 +02:00
commit 883f6dcd18
3 changed files with 31 additions and 34 deletions

View File

@ -4,6 +4,7 @@ using JLD
using GroupRings using GroupRings
using Memento using Memento
using Groups
import Nemo: Group, GroupElem import Nemo: Group, GroupElem
const logger = Memento.config("info", fmt="{msg}") const logger = Memento.config("info", fmt="{msg}")
@ -45,23 +46,21 @@ function ΔandSDPconstraints(name::String, G::Group)
return Δ, sdp_constraints return Δ, sdp_constraints
end end
function ΔandSDPconstraints{T<:GroupElem}(name::String, S::Vector{T}, radius::Int) function ΔandSDPconstraints{T<:GroupElem}(name::String, S::Vector{T}, Id::T; radius::Int=2)
S, Id = generating_set()
info(logger, "Computing pm, Δ, sdp_constraints...") info(logger, "Computing pm, Δ, sdp_constraints...")
t = @timed Δ, sdp_constraints = ΔandSDPconstraints(S, radius) Δ, sdp_constraints = ΔandSDPconstraints(S, Id, radius=radius)
info(logger, timed_msg(t))
pm_fname, Δ_fname = pmΔfilenames(name) pm_fname, Δ_fname = pmΔfilenames(name)
save(pm_fname, "pm", parent(Δ).pm) save(pm_fname, "pm", parent(Δ).pm)
save(Δ_fname, "Δ", Δ.coeffs) save(Δ_fname, "Δ", Δ.coeffs)
return Δ, sdp_constraints
end end
function ΔandSDPconstraints{T<:GroupElem}(S::Vector{T}, r::Int=2) function ΔandSDPconstraints{T<:GroupElem}(S::Vector{T}, Id::T; radius::Int=2)
Id = parent(S[1])() B, sizes = Groups.generate_balls(S, Id, radius=2*radius)
B, sizes = Groups.generate_balls(S, Id, radius=2*r)
info(logger, "Generated balls of sizes $sizes") info(logger, "Generated balls of sizes $sizes")
info(logger, "Creating product matrix...") info(logger, "Creating product matrix...")
t = @timed pm = GroupRings.create_pm(B, GroupRings.reverse_dict(B), sizes[r]; twisted=true) t = @timed pm = GroupRings.create_pm(B, GroupRings.reverse_dict(B), sizes[radius]; twisted=true)
info(logger, timed_msg(t)) info(logger, timed_msg(t))
info(logger, "Creating sdp_constratints...") info(logger, "Creating sdp_constratints...")
@ -70,7 +69,7 @@ function ΔandSDPconstraints{T<:GroupElem}(S::Vector{T}, r::Int=2)
RG = GroupRing(parent(Id), B, pm) RG = GroupRing(parent(Id), B, pm)
Δ = splaplacian(RG, S, B[1:sizes[r]], sizes[2*r]) Δ = splaplacian(RG, S, Id, sizes[2*radius])
return Δ, sdp_constraints return Δ, sdp_constraints
end end
@ -143,6 +142,7 @@ end
Kazhdan_from_sgap(λ,N) = sqrt(2*λ/N) Kazhdan_from_sgap(λ,N) = sqrt(2*λ/N)
function setup_logging(name::String) function setup_logging(name::String)
isdir(name) || mkdir(name)
Memento.add_handler(logger, Memento.add_handler(logger,
Memento.DefaultHandler(joinpath(name,"full_$(string((now()))).log"), Memento.DefaultHandler(joinpath(name,"full_$(string((now()))).log"),
@ -155,20 +155,16 @@ function setup_logging(name::String)
end end
function check_property_T(name::String, S, solver, upper_bound, tol, radius) function check_property_T(name::String, S, Id, solver, upper_bound, tol, radius)
if !isdir(name) isdir(name) || mkdir(name)
mkdir(name)
end
setup_logging(name)
if all(isfile.(pmΔfilenames(name))) if all(isfile.(pmΔfilenames(name)))
# cached # cached
Δ, sdp_constraints = ΔandSDPconstraints(name, parent(S[1])) Δ, sdp_constraints = ΔandSDPconstraints(name, parent(S[1]))
else else
# compute # compute
Δ, sdp_constraints = ΔandSDPconstraints(name, S, radius) Δ, sdp_constraints = ΔandSDPconstraints(name, S, Id, radius=radius)
end end
info(logger, "|S| = $(length(S))") info(logger, "|S| = $(length(S))")
@ -202,7 +198,7 @@ function check_property_T(name::String, S, solver, upper_bound, tol, radius)
end end
if sgap > 0 if sgap > 0
info(logger, "λ ≥ $(Float64(trunc(sgap,12)))") info(logger, "λ ≥ $(Float64(trunc(sgap,12)))")
Kazhdan_κ = Kazhdan_from_sgap(sgap, S) Kazhdan_κ = Kazhdan_from_sgap(sgap, length(S))
Kazhdan_κ = Float64(trunc(Kazhdan_κ, 12)) Kazhdan_κ = Float64(trunc(Kazhdan_κ, 12))
info(logger, "κ($name, S) ≥ $Kazhdan_κ: Group HAS property (T)!") info(logger, "κ($name, S) ≥ $Kazhdan_κ: Group HAS property (T)!")
return true return true

View File

@ -81,7 +81,7 @@ function distance_to_cone{T<:Rational, S<:Interval}(λ::T, sqrt_matrix::Array{S,
SOS = compute_SOS(sqrt_matrix, Δ) SOS = compute_SOS(sqrt_matrix, Δ)
info(logger, "ɛ(∑ξᵢ*ξᵢ) ∈ $(GroupRings.augmentation(SOS))") info(logger, "ɛ(∑ξᵢ*ξᵢ) ∈ $(GroupRings.augmentation(SOS))")
λ_int = @interval(λ) λ_int = @interval(λ)
Δ_int = GroupRingElem([@interval(c) for c in Δ.coeffs], parent(Δ).pm) Δ_int = GroupRingElem([@interval(c) for c in Δ.coeffs], parent(Δ))
SOS_diff = EOI(Δ_int, λ_int) - SOS SOS_diff = EOI(Δ_int, λ_int) - SOS
eoi_SOS_L1_dist = norm(SOS_diff,1) eoi_SOS_L1_dist = norm(SOS_diff,1)
@ -91,7 +91,7 @@ function distance_to_cone{T<:Rational, S<:Interval}(λ::T, sqrt_matrix::Array{S,
info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ∈ $(ɛ_dist)") info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ∈ $(ɛ_dist)")
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(eoi_SOS_L1_dist)") info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(eoi_SOS_L1_dist)")
distance_to_cone = λ - 2^(len-1)*eoi_SOS_L_dist distance_to_cone = λ - 2^(len-1)*eoi_SOS_L1_dist
return distance_to_cone return distance_to_cone
end end
@ -99,14 +99,14 @@ function distance_to_cone{T<:AbstractFloat}(λ::T, sqrt_matrix::Array{T,2}, Δ::
SOS = compute_SOS(sqrt_matrix, Δ) SOS = compute_SOS(sqrt_matrix, Δ)
SOS_diff = EOI(Δ, λ) - SOS SOS_diff = EOI(Δ, λ) - SOS
eoi_SOS_L_dist = norm(SOS_diff,1) eoi_SOS_L1_dist = norm(SOS_diff,1)
info(logger, "λ = ") info(logger, "λ = ")
ɛ_dist = GroupRings.augmentation(SOS_diff) ɛ_dist = GroupRings.augmentation(SOS_diff)
info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ≈ $(@sprintf("%.10f", ɛ_dist))") info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ≈ $(@sprintf("%.10f", ɛ_dist))")
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", eoi_SOS_L_dist))") info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", eoi_SOS_L1_dist))")
distance_to_cone = λ - 2^(len-1)*eoi_SOS_L_dist distance_to_cone = λ - 2^(len-1)*eoi_SOS_L1_dist
return distance_to_cone return distance_to_cone
end end
@ -115,7 +115,7 @@ function check_distance_to_positive_cone(Δ::GroupRingElem, λ, P;
isapprox(eigvals(P), abs(eigvals(P)), atol=tol) || isapprox(eigvals(P), abs(eigvals(P)), atol=tol) ||
warn("The solution matrix doesn't seem to be positive definite!") warn("The solution matrix doesn't seem to be positive definite!")
@assert P == Symmetric(P) # @assert P == Symmetric(P)
Q = real(sqrtm(P)) Q = real(sqrtm(P))
info(logger, "------------------------------------------------------------") info(logger, "------------------------------------------------------------")
@ -130,6 +130,7 @@ function check_distance_to_positive_cone(Δ::GroupRingElem, λ, P;
return fp_distance return fp_distance
end end
info(logger, "")
info(logger, "Projecting columns of rationalized Q to the augmentation ideal...") info(logger, "Projecting columns of rationalized Q to the augmentation ideal...")
δ = eps(λ) δ = eps(λ)
Q_ = (Q, δ) Q_ = (Q, δ)
@ -140,20 +141,20 @@ function check_distance_to_positive_cone(Δ::GroupRingElem, λ, P;
info(logger, "Checking in interval arithmetic") info(logger, "Checking in interval arithmetic")
Q_ω_int = Float64.(Q_ω) ± δ Q_ω_int = Float64.(Q_ω) ± δ
t = @timed Interval_dist_to_Σ² = distance_to_cone(λ_, Q_ω_int, Δ_, len=len) t = @timed Interval_dist_to_ΣSq = distance_to_cone(λ_, Q_ω_int, Δ_, len=len)
info(logger, timed_msg(t)) info(logger, timed_msg(t))
info(logger, "The Augmentation-projected actual distance (to positive cone) ∈ $(Interval_dist_to_Σ²)") info(logger, "The Augmentation-projected actual distance (to positive cone) ∈ $(Interval_dist_to_ΣSq)")
info(logger, "------------------------------------------------------------") info(logger, "------------------------------------------------------------")
if Interval_dist_to_Σ².lo 0 || !rational if Interval_dist_to_ΣSq.lo 0 || !rational
return Interval_dist_to_Σ² return Interval_dist_to_ΣSq
else else
info(logger, "Checking Projected SOS decomposition in exact rational arithmetic...") info(logger, "Checking Projected SOS decomposition in exact rational arithmetic...")
t = @timed _dist_to_Σ² = distance_to_cone(λ_, Q_ω, Δ_, len=len) t = @timed _dist_to_ΣSq = distance_to_cone(λ_, Q_ω, Δ_, len=len)
info(logger, timed_msg(t)) info(logger, timed_msg(t))
@assert isa(_dist_to_Σ², Rational) @assert isa(_dist_to_ΣSq, Rational)
info(logger, "Augmentation-projected rational distance (to positive cone) ≥ $(Float64(trunc(_dist_to_Σ²,8)))") info(logger, "Augmentation-projected rational distance (to positive cone) ≥ $(Float64(trunc(_dist_to_ΣSq,8)))")
info(logger, "------------------------------------------------------------") info(logger, "------------------------------------------------------------")
return _dist_to_Σ² return _dist_to_ΣSq
end end
end end

View File

@ -13,9 +13,9 @@ function constraints_from_pm(pm, total_length=maximum(pm))
return constraints return constraints
end end
function splaplacian(RG::GroupRing, S, basis, n=length(basis), T::Type=Int) function splaplacian(RG::GroupRing, S, Id=RG.group(), n=length(basis),T::Type=Int)
result = RG(spzeros(T, n)) result = RG(spzeros(T, n))
result[RG.group()] = T(length(S)) result[Id] = T(length(S))
for s in S for s in S
result[s] -= one(T) result[s] -= one(T)
end end
@ -27,7 +27,7 @@ function create_SDP_problem(Δ::GroupRingElem, matrix_constraints; upper_bound=I
Δ² = Δ*Δ Δ² = Δ*Δ
@assert length(Δ.coeffs) == length(matrix_constraints) @assert length(Δ.coeffs) == length(matrix_constraints)
m = JuMP.Model(); m = JuMP.Model();
JuMP.@variable(m, P[1:N, 1:N], SDP) JuMP.@variable(m, P[1:N, 1:N])
JuMP.@SDconstraint(m, P >= 0) JuMP.@SDconstraint(m, P >= 0)
JuMP.@constraint(m, sum(P[i] for i in eachindex(P)) == 0) JuMP.@constraint(m, sum(P[i] for i in eachindex(P)) == 0)