mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-23 08:15:29 +01:00
Merge branch 'AutF4' of git.wmi.amu.edu.pl:kalmar/PropertyT.jl into AutF4
# Conflicts: # src/PropertyT.jl # src/sdps.jl
This commit is contained in:
commit
883f6dcd18
@ -4,6 +4,7 @@ using JLD
|
||||
using GroupRings
|
||||
using Memento
|
||||
|
||||
using Groups
|
||||
import Nemo: Group, GroupElem
|
||||
|
||||
const logger = Memento.config("info", fmt="{msg}")
|
||||
@ -45,23 +46,21 @@ function ΔandSDPconstraints(name::String, G::Group)
|
||||
return Δ, sdp_constraints
|
||||
end
|
||||
|
||||
function ΔandSDPconstraints{T<:GroupElem}(name::String, S::Vector{T}, radius::Int)
|
||||
S, Id = generating_set()
|
||||
function ΔandSDPconstraints{T<:GroupElem}(name::String, S::Vector{T}, Id::T; radius::Int=2)
|
||||
info(logger, "Computing pm, Δ, sdp_constraints...")
|
||||
t = @timed Δ, sdp_constraints = ΔandSDPconstraints(S, radius)
|
||||
info(logger, timed_msg(t))
|
||||
Δ, sdp_constraints = ΔandSDPconstraints(S, Id, radius=radius)
|
||||
pm_fname, Δ_fname = pmΔfilenames(name)
|
||||
save(pm_fname, "pm", parent(Δ).pm)
|
||||
save(Δ_fname, "Δ", Δ.coeffs)
|
||||
return Δ, sdp_constraints
|
||||
end
|
||||
|
||||
function ΔandSDPconstraints{T<:GroupElem}(S::Vector{T}, r::Int=2)
|
||||
Id = parent(S[1])()
|
||||
B, sizes = Groups.generate_balls(S, Id, radius=2*r)
|
||||
function ΔandSDPconstraints{T<:GroupElem}(S::Vector{T}, Id::T; radius::Int=2)
|
||||
B, sizes = Groups.generate_balls(S, Id, radius=2*radius)
|
||||
info(logger, "Generated balls of sizes $sizes")
|
||||
|
||||
info(logger, "Creating product matrix...")
|
||||
t = @timed pm = GroupRings.create_pm(B, GroupRings.reverse_dict(B), sizes[r]; twisted=true)
|
||||
t = @timed pm = GroupRings.create_pm(B, GroupRings.reverse_dict(B), sizes[radius]; twisted=true)
|
||||
info(logger, timed_msg(t))
|
||||
|
||||
info(logger, "Creating sdp_constratints...")
|
||||
@ -70,7 +69,7 @@ function ΔandSDPconstraints{T<:GroupElem}(S::Vector{T}, r::Int=2)
|
||||
|
||||
RG = GroupRing(parent(Id), B, pm)
|
||||
|
||||
Δ = splaplacian(RG, S, B[1:sizes[r]], sizes[2*r])
|
||||
Δ = splaplacian(RG, S, Id, sizes[2*radius])
|
||||
return Δ, sdp_constraints
|
||||
end
|
||||
|
||||
@ -143,6 +142,7 @@ end
|
||||
Kazhdan_from_sgap(λ,N) = sqrt(2*λ/N)
|
||||
|
||||
function setup_logging(name::String)
|
||||
isdir(name) || mkdir(name)
|
||||
|
||||
Memento.add_handler(logger,
|
||||
Memento.DefaultHandler(joinpath(name,"full_$(string((now()))).log"),
|
||||
@ -155,20 +155,16 @@ function setup_logging(name::String)
|
||||
end
|
||||
|
||||
|
||||
function check_property_T(name::String, S, solver, upper_bound, tol, radius)
|
||||
function check_property_T(name::String, S, Id, solver, upper_bound, tol, radius)
|
||||
|
||||
if !isdir(name)
|
||||
mkdir(name)
|
||||
end
|
||||
|
||||
setup_logging(name)
|
||||
isdir(name) || mkdir(name)
|
||||
|
||||
if all(isfile.(pmΔfilenames(name)))
|
||||
# cached
|
||||
Δ, sdp_constraints = ΔandSDPconstraints(name, parent(S[1]))
|
||||
else
|
||||
# compute
|
||||
Δ, sdp_constraints = ΔandSDPconstraints(name, S, radius)
|
||||
Δ, sdp_constraints = ΔandSDPconstraints(name, S, Id, radius=radius)
|
||||
end
|
||||
|
||||
info(logger, "|S| = $(length(S))")
|
||||
@ -202,7 +198,7 @@ function check_property_T(name::String, S, solver, upper_bound, tol, radius)
|
||||
end
|
||||
if sgap > 0
|
||||
info(logger, "λ ≥ $(Float64(trunc(sgap,12)))")
|
||||
Kazhdan_κ = Kazhdan_from_sgap(sgap, S)
|
||||
Kazhdan_κ = Kazhdan_from_sgap(sgap, length(S))
|
||||
Kazhdan_κ = Float64(trunc(Kazhdan_κ, 12))
|
||||
info(logger, "κ($name, S) ≥ $Kazhdan_κ: Group HAS property (T)!")
|
||||
return true
|
||||
|
@ -81,7 +81,7 @@ function distance_to_cone{T<:Rational, S<:Interval}(λ::T, sqrt_matrix::Array{S,
|
||||
SOS = compute_SOS(sqrt_matrix, Δ)
|
||||
info(logger, "ɛ(∑ξᵢ*ξᵢ) ∈ $(GroupRings.augmentation(SOS))")
|
||||
λ_int = @interval(λ)
|
||||
Δ_int = GroupRingElem([@interval(c) for c in Δ.coeffs], parent(Δ).pm)
|
||||
Δ_int = GroupRingElem([@interval(c) for c in Δ.coeffs], parent(Δ))
|
||||
SOS_diff = EOI(Δ_int, λ_int) - SOS
|
||||
eoi_SOS_L1_dist = norm(SOS_diff,1)
|
||||
|
||||
@ -91,7 +91,7 @@ function distance_to_cone{T<:Rational, S<:Interval}(λ::T, sqrt_matrix::Array{S,
|
||||
info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ∈ $(ɛ_dist)")
|
||||
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(eoi_SOS_L1_dist)")
|
||||
|
||||
distance_to_cone = λ - 2^(len-1)*eoi_SOS_L₁_dist
|
||||
distance_to_cone = λ - 2^(len-1)*eoi_SOS_L1_dist
|
||||
return distance_to_cone
|
||||
end
|
||||
|
||||
@ -99,14 +99,14 @@ function distance_to_cone{T<:AbstractFloat}(λ::T, sqrt_matrix::Array{T,2}, Δ::
|
||||
SOS = compute_SOS(sqrt_matrix, Δ)
|
||||
|
||||
SOS_diff = EOI(Δ, λ) - SOS
|
||||
eoi_SOS_L₁_dist = norm(SOS_diff,1)
|
||||
eoi_SOS_L1_dist = norm(SOS_diff,1)
|
||||
|
||||
info(logger, "λ = $λ")
|
||||
ɛ_dist = GroupRings.augmentation(SOS_diff)
|
||||
info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ≈ $(@sprintf("%.10f", ɛ_dist))")
|
||||
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", eoi_SOS_L₁_dist))")
|
||||
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", eoi_SOS_L1_dist))")
|
||||
|
||||
distance_to_cone = λ - 2^(len-1)*eoi_SOS_L₁_dist
|
||||
distance_to_cone = λ - 2^(len-1)*eoi_SOS_L1_dist
|
||||
return distance_to_cone
|
||||
end
|
||||
|
||||
@ -115,7 +115,7 @@ function check_distance_to_positive_cone(Δ::GroupRingElem, λ, P;
|
||||
|
||||
isapprox(eigvals(P), abs(eigvals(P)), atol=tol) ||
|
||||
warn("The solution matrix doesn't seem to be positive definite!")
|
||||
@assert P == Symmetric(P)
|
||||
# @assert P == Symmetric(P)
|
||||
Q = real(sqrtm(P))
|
||||
|
||||
info(logger, "------------------------------------------------------------")
|
||||
@ -130,6 +130,7 @@ function check_distance_to_positive_cone(Δ::GroupRingElem, λ, P;
|
||||
return fp_distance
|
||||
end
|
||||
|
||||
info(logger, "")
|
||||
info(logger, "Projecting columns of rationalized Q to the augmentation ideal...")
|
||||
δ = eps(λ)
|
||||
Q_ℚ = ℚ(Q, δ)
|
||||
@ -140,20 +141,20 @@ function check_distance_to_positive_cone(Δ::GroupRingElem, λ, P;
|
||||
|
||||
info(logger, "Checking in interval arithmetic")
|
||||
Q_ℚω_int = Float64.(Q_ℚω) ± δ
|
||||
t = @timed Interval_dist_to_Σ² = distance_to_cone(λ_ℚ, Q_ℚω_int, Δ_ℚ, len=len)
|
||||
t = @timed Interval_dist_to_ΣSq = distance_to_cone(λ_ℚ, Q_ℚω_int, Δ_ℚ, len=len)
|
||||
info(logger, timed_msg(t))
|
||||
info(logger, "The Augmentation-projected actual distance (to positive cone) ∈ $(Interval_dist_to_Σ²)")
|
||||
info(logger, "The Augmentation-projected actual distance (to positive cone) ∈ $(Interval_dist_to_ΣSq)")
|
||||
info(logger, "------------------------------------------------------------")
|
||||
|
||||
if Interval_dist_to_Σ².lo ≤ 0 || !rational
|
||||
return Interval_dist_to_Σ²
|
||||
if Interval_dist_to_ΣSq.lo ≤ 0 || !rational
|
||||
return Interval_dist_to_ΣSq
|
||||
else
|
||||
info(logger, "Checking Projected SOS decomposition in exact rational arithmetic...")
|
||||
t = @timed ℚ_dist_to_Σ² = distance_to_cone(λ_ℚ, Q_ℚω, Δ_ℚ, len=len)
|
||||
t = @timed ℚ_dist_to_ΣSq = distance_to_cone(λ_ℚ, Q_ℚω, Δ_ℚ, len=len)
|
||||
info(logger, timed_msg(t))
|
||||
@assert isa(ℚ_dist_to_Σ², Rational)
|
||||
info(logger, "Augmentation-projected rational distance (to positive cone) ≥ $(Float64(trunc(ℚ_dist_to_Σ²,8)))")
|
||||
@assert isa(ℚ_dist_to_ΣSq, Rational)
|
||||
info(logger, "Augmentation-projected rational distance (to positive cone) ≥ $(Float64(trunc(ℚ_dist_to_ΣSq,8)))")
|
||||
info(logger, "------------------------------------------------------------")
|
||||
return ℚ_dist_to_Σ²
|
||||
return ℚ_dist_to_ΣSq
|
||||
end
|
||||
end
|
||||
|
@ -13,9 +13,9 @@ function constraints_from_pm(pm, total_length=maximum(pm))
|
||||
return constraints
|
||||
end
|
||||
|
||||
function splaplacian(RG::GroupRing, S, basis, n=length(basis), T::Type=Int)
|
||||
function splaplacian(RG::GroupRing, S, Id=RG.group(), n=length(basis),T::Type=Int)
|
||||
result = RG(spzeros(T, n))
|
||||
result[RG.group()] = T(length(S))
|
||||
result[Id] = T(length(S))
|
||||
for s in S
|
||||
result[s] -= one(T)
|
||||
end
|
||||
@ -27,7 +27,7 @@ function create_SDP_problem(Δ::GroupRingElem, matrix_constraints; upper_bound=I
|
||||
Δ² = Δ*Δ
|
||||
@assert length(Δ.coeffs) == length(matrix_constraints)
|
||||
m = JuMP.Model();
|
||||
JuMP.@variable(m, P[1:N, 1:N], SDP)
|
||||
JuMP.@variable(m, P[1:N, 1:N])
|
||||
JuMP.@SDconstraint(m, P >= 0)
|
||||
JuMP.@constraint(m, sum(P[i] for i in eachindex(P)) == 0)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user