mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-12-24 02:00:30 +01:00
Abstract group-unspecific functions
This commit is contained in:
parent
53dec056e0
commit
90ef2e2c8c
@ -11,6 +11,17 @@ function products{T<:Real}(S1::Array{Array{T,2},1}, S2::Array{Array{T,2},1})
|
||||
return unique(result[2:end])
|
||||
end
|
||||
|
||||
function generate_B₂_and_B₄(identity, S₁)
|
||||
S₂ = products(S₁, S₁);
|
||||
S₃ = products(S₁, S₂);
|
||||
S₄ = products(S₂, S₂);
|
||||
|
||||
B₂ = unique(vcat([identity],S₁,S₂));
|
||||
B₄ = unique(vcat(B₂, S₃, S₄));
|
||||
@assert B₄[1:length(B₂)] == B₂
|
||||
return B₂, B₄;
|
||||
end
|
||||
|
||||
function read_GAP_raw_list(filename::String)
|
||||
return eval(parse(String(read(filename))))
|
||||
end
|
||||
@ -71,10 +82,22 @@ function Laplacian(S::Array{Array{Float64,2},1},
|
||||
return full(Laplacian_sparse(S,basis))
|
||||
end
|
||||
|
||||
function create_SDP_problem(matrix_constraints,
|
||||
Δ²::GroupAlgebraElement, Δ::GroupAlgebraElement)
|
||||
function prepare_Laplacian_and_constraints{T}(S::Vector{Array{T,2}};)
|
||||
|
||||
identity = eye(S[1])
|
||||
B₂, B₄ = generate_B₂_and_B₄(identity, S)
|
||||
|
||||
product_matrix, matrix_constraints = create_product_matrix(B₄,length(B₂));
|
||||
|
||||
L= Laplacian(S, B₄);
|
||||
const Δ = GroupAlgebraElement(L, product_matrix)
|
||||
|
||||
return Δ, matrix_constraints
|
||||
end
|
||||
|
||||
function create_SDP_problem(matrix_constraints, Δ::GroupAlgebraElement)
|
||||
N = size(Δ.product_matrix,1)
|
||||
@assert length(Δ) == length(Δ²)
|
||||
const Δ² = Δ*Δ
|
||||
@assert length(Δ) == length(matrix_constraints)
|
||||
m = Model();
|
||||
@variable(m, A[1:N, 1:N], SDP)
|
||||
@ -88,7 +111,35 @@ function create_SDP_problem(matrix_constraints,
|
||||
return m
|
||||
end
|
||||
|
||||
function resulting_SOS{T<:Number}(sqrt_matrix::Array{T,2}, elt::GroupAlgebraElement{T})
|
||||
function solve_for_property_T{T}(S₁::Vector{Array{T,2}}, solver; verbose=true)
|
||||
|
||||
Δ, matrix_constraints = prepare_Laplacian_and_constraints(S₁)
|
||||
|
||||
problem = create_SDP_problem(matrix_constraints, Δ);
|
||||
@show solver
|
||||
|
||||
setsolver(problem, solver);
|
||||
verbose && @show problem
|
||||
|
||||
solution_status = solve(problem);
|
||||
verbose && @show solution_status
|
||||
|
||||
if solution_status != :Optimal
|
||||
throw(ExceptionError("The solver did not solve the problem successfully!"))
|
||||
else
|
||||
κ = SL_3ZZ.objVal;
|
||||
A = getvalue(getvariable(SL_3ZZ, :A));;
|
||||
end
|
||||
|
||||
return κ, A
|
||||
end
|
||||
|
||||
function EOI{T<:Number}(Δ::GroupAlgebraElement{T}, κ::T)
|
||||
return Δ*Δ - κ*Δ
|
||||
end
|
||||
|
||||
function resulting_SOS{T<:Number}(sqrt_matrix::Array{T,2},
|
||||
elt::GroupAlgebraElement{T})
|
||||
result = zeros(elt.coefficients)
|
||||
zzz = zeros(elt.coefficients)
|
||||
L = size(sqrt_matrix,2)
|
||||
@ -106,10 +157,19 @@ function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
|
||||
for i in 1:l
|
||||
col = view(sqrt_matrix,:,i)
|
||||
sqrt_corrected[:,i] = col - sum(col)//l
|
||||
# @assert sum(sqrt_corrected[:,i]) == 0
|
||||
# @assert sum(sqrt_corrected[:,i]) == 0
|
||||
end
|
||||
return sqrt_corrected
|
||||
end
|
||||
|
||||
function check_solution{T<:Number}(κ::T,
|
||||
sqrt_matrix::Array{T,2},
|
||||
Δ::GroupAlgebraElement{T})
|
||||
eoi = EOI(Δ, κ)
|
||||
result = resulting_SOS(sqrt_matrix, Δ)
|
||||
return sum(abs.((result - eoi).coefficients)), sum(result.coefficients)
|
||||
end
|
||||
|
||||
function rationalize{T<:Integer, S<:Real}(::Type{T},
|
||||
X::AbstractArray{S}; tol::Real=eps(eltype(X)))
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user