mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2025-01-12 06:32:34 +01:00
replace BlockDecomposition by SymbolicWedderburn
This commit is contained in:
parent
92d9e468d2
commit
9511e34de4
@ -4,23 +4,16 @@ authors = ["Marek Kaluba <kalmar@amu.edu.pl>"]
|
|||||||
version = "0.3.2"
|
version = "0.3.2"
|
||||||
|
|
||||||
[deps]
|
[deps]
|
||||||
AbstractAlgebra = "c3fe647b-3220-5bb0-a1ea-a7954cac585d"
|
|
||||||
Dates = "ade2ca70-3891-5945-98fb-dc099432e06a"
|
Dates = "ade2ca70-3891-5945-98fb-dc099432e06a"
|
||||||
GroupRings = "0befed6a-bd73-11e8-1e41-a1190947c2f5"
|
|
||||||
Groups = "5d8bd718-bd84-11e8-3b40-ad14f4a32557"
|
|
||||||
IntervalArithmetic = "d1acc4aa-44c8-5952-acd4-ba5d80a2a253"
|
IntervalArithmetic = "d1acc4aa-44c8-5952-acd4-ba5d80a2a253"
|
||||||
JLD = "4138dd39-2aa7-5051-a626-17a0bb65d9c8"
|
|
||||||
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
|
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
|
||||||
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
||||||
SCS = "c946c3f1-0d1f-5ce8-9dea-7daa1f7e2d13"
|
SCS = "c946c3f1-0d1f-5ce8-9dea-7daa1f7e2d13"
|
||||||
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
|
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
|
||||||
|
SymbolicWedderburn = "858aa9a9-4c7c-4c62-b466-2421203962a2"
|
||||||
|
|
||||||
[compat]
|
[compat]
|
||||||
AbstractAlgebra = "^0.10.0"
|
|
||||||
GroupRings = "^0.3.2"
|
|
||||||
Groups = "^0.5.0"
|
|
||||||
IntervalArithmetic = "^0.16.0"
|
IntervalArithmetic = "^0.16.0"
|
||||||
JLD = "^0.9.0"
|
|
||||||
JuMP = "^0.20.0"
|
JuMP = "^0.20.0"
|
||||||
SCS = "^0.7.0"
|
SCS = "^0.7.0"
|
||||||
julia = "^1.3.0"
|
julia = "^1.3.0"
|
||||||
|
@ -1,22 +1,16 @@
|
|||||||
__precompile__()
|
__precompile__()
|
||||||
module PropertyT
|
module PropertyT
|
||||||
|
|
||||||
using AbstractAlgebra
|
|
||||||
using LinearAlgebra
|
using LinearAlgebra
|
||||||
using SparseArrays
|
using SparseArrays
|
||||||
using Dates
|
using Dates
|
||||||
|
|
||||||
using Groups
|
using Groups
|
||||||
using GroupRings
|
using SymbolicWedderburn
|
||||||
|
|
||||||
using JLD
|
|
||||||
using JuMP
|
using JuMP
|
||||||
|
|
||||||
import AbstractAlgebra: Group, NCRing
|
|
||||||
|
|
||||||
include("laplacians.jl")
|
include("laplacians.jl")
|
||||||
include("RGprojections.jl")
|
|
||||||
include("blockdecomposition.jl")
|
|
||||||
include("sos_sdps.jl")
|
include("sos_sdps.jl")
|
||||||
include("checksolution.jl")
|
include("checksolution.jl")
|
||||||
|
|
||||||
|
@ -1,251 +0,0 @@
|
|||||||
module Projections
|
|
||||||
|
|
||||||
using AbstractAlgebra
|
|
||||||
using Groups
|
|
||||||
using GroupRings
|
|
||||||
|
|
||||||
export PermCharacter, DirectProdCharacter, rankOne_projections
|
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
#
|
|
||||||
# Characters of Symmetric Group and DirectProduct
|
|
||||||
#
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
abstract type AbstractCharacter end
|
|
||||||
|
|
||||||
struct PermCharacter <: AbstractCharacter
|
|
||||||
p::Generic.Partition
|
|
||||||
end
|
|
||||||
|
|
||||||
struct DirectProdCharacter{N, T<:AbstractCharacter} <: AbstractCharacter
|
|
||||||
chars::NTuple{N, T}
|
|
||||||
end
|
|
||||||
|
|
||||||
function (chi::DirectProdCharacter)(g::DirectPowerGroupElem)
|
|
||||||
res = 1
|
|
||||||
for (χ, elt) in zip(chi.chars, g.elts)
|
|
||||||
res *= χ(elt)
|
|
||||||
end
|
|
||||||
return res
|
|
||||||
end
|
|
||||||
|
|
||||||
function (chi::PermCharacter)(g::Generic.Perm)
|
|
||||||
R = AbstractAlgebra.partitionseq(chi.p)
|
|
||||||
p = Partition(Generic.permtype(g))
|
|
||||||
return Int(Generic.MN1inner(R, p, 1, Generic._charvalsTable))
|
|
||||||
end
|
|
||||||
|
|
||||||
AbstractAlgebra.dim(χ::PermCharacter) = dim(YoungTableau(χ.p))
|
|
||||||
|
|
||||||
for T in [PermCharacter, DirectProdCharacter]
|
|
||||||
@eval begin
|
|
||||||
function (chi::$T)(X::GroupRingElem)
|
|
||||||
RG = parent(X)
|
|
||||||
z = zero(eltype(X))
|
|
||||||
result = z
|
|
||||||
for i in 1:length(X.coeffs)
|
|
||||||
if X.coeffs[i] != z
|
|
||||||
result += chi(RG.basis[i])*X.coeffs[i]
|
|
||||||
end
|
|
||||||
end
|
|
||||||
return result
|
|
||||||
end
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
characters(G::Generic.SymmetricGroup) = (PermCharacter(p) for p in AllParts(G.n))
|
|
||||||
|
|
||||||
function characters(G::DirectPowerGroup{N}) where N
|
|
||||||
nfold_chars = Iterators.repeated(characters(G.group), N)
|
|
||||||
return (DirectProdCharacter(idx) for idx in Iterators.product(nfold_chars...))
|
|
||||||
end
|
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
#
|
|
||||||
# Projections
|
|
||||||
#
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
function central_projection(RG::GroupRing, chi::AbstractCharacter, T::Type=Rational{Int})
|
|
||||||
result = RG(zeros(T, length(RG.basis)))
|
|
||||||
dim = chi(one(RG.group))
|
|
||||||
ord = Int(order(RG.group))
|
|
||||||
|
|
||||||
for g in RG.basis
|
|
||||||
result[g] = convert(T, (dim//ord)*chi(g))
|
|
||||||
end
|
|
||||||
|
|
||||||
return result
|
|
||||||
end
|
|
||||||
|
|
||||||
function alternating_emb(RG::GroupRing{Gr,T}, V::Vector{T}, S::Type=Rational{Int}) where {Gr<:AbstractAlgebra.AbstractPermutationGroup, T<:GroupElem}
|
|
||||||
res = RG(S)
|
|
||||||
for g in V
|
|
||||||
res[g] += sign(g)
|
|
||||||
end
|
|
||||||
return res
|
|
||||||
end
|
|
||||||
|
|
||||||
function idempotents(RG::GroupRing{Generic.SymmetricGroup{S}}, T::Type=Rational{Int}) where S<:Integer
|
|
||||||
if RG.group.n == 1
|
|
||||||
return GroupRingElem{T}[one(RG,T)]
|
|
||||||
elseif RG.group.n == 2
|
|
||||||
Id = one(RG,T)
|
|
||||||
transp = RG(perm"(1,2)", T)
|
|
||||||
return GroupRingElem{T}[1//2*(Id + transp), 1//2*(Id - transp)]
|
|
||||||
end
|
|
||||||
|
|
||||||
projs = Vector{Vector{Generic.Perm{S}}}()
|
|
||||||
for l in 2:RG.group.n
|
|
||||||
u = RG.group([circshift([i for i in 1:l], -1); [i for i in l+1:RG.group.n]])
|
|
||||||
i = 0
|
|
||||||
while (l-1)*i <= RG.group.n
|
|
||||||
v = RG.group(circshift(collect(1:RG.group.n), i))
|
|
||||||
k = inv(v)*u*v
|
|
||||||
push!(projs, generateGroup([k], RG.group.n))
|
|
||||||
i += 1
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
idems = Vector{GroupRingElem{T}}()
|
|
||||||
|
|
||||||
for p in projs
|
|
||||||
append!(idems, [RG(p, T)//length(p), alternating_emb(RG, p, T)//length(p)])
|
|
||||||
end
|
|
||||||
|
|
||||||
return unique(idems)
|
|
||||||
end
|
|
||||||
|
|
||||||
function rankOne_projection(chi::PermCharacter, idems::Vector{T}) where {T<:GroupRingElem}
|
|
||||||
|
|
||||||
RG = parent(first(idems))
|
|
||||||
S = eltype(first(idems))
|
|
||||||
|
|
||||||
ids = [one(RG, S); idems]
|
|
||||||
zzz = zero(S)
|
|
||||||
|
|
||||||
for (i,j,k) in Base.product(ids, ids, ids)
|
|
||||||
if chi(i) == zzz || chi(j) == zzz || chi(k) == zzz
|
|
||||||
continue
|
|
||||||
else
|
|
||||||
elt = i*j*k
|
|
||||||
if elt^2 != elt
|
|
||||||
continue
|
|
||||||
elseif chi(elt) == one(S)
|
|
||||||
return elt
|
|
||||||
# return (i,j,k)
|
|
||||||
end
|
|
||||||
end
|
|
||||||
end
|
|
||||||
throw("Couldn't find rank-one projection for $chi")
|
|
||||||
end
|
|
||||||
|
|
||||||
function rankOne_projections(RG::GroupRing{<:Generic.SymmetricGroup}, T::Type=Rational{Int})
|
|
||||||
if RG.group.n == 1
|
|
||||||
return [GroupRingElem([one(T)], RG)]
|
|
||||||
end
|
|
||||||
|
|
||||||
RGidems = idempotents(RG, T)
|
|
||||||
|
|
||||||
min_projs = [central_projection(RG,chi)*rankOne_projection(chi,RGidems) for chi in characters(RG.group)]
|
|
||||||
|
|
||||||
return min_projs
|
|
||||||
end
|
|
||||||
|
|
||||||
function ifelsetuple(a,b, k, n)
|
|
||||||
x = [repeat([a], k); repeat([b], n-k)]
|
|
||||||
return tuple(x...)
|
|
||||||
end
|
|
||||||
|
|
||||||
function orbit_selector(n::Integer, k::Integer,
|
|
||||||
chi::AbstractCharacter, psi::AbstractCharacter)
|
|
||||||
return Projections.DirectProdCharacter(ifelsetuple(chi, psi, k, n))
|
|
||||||
end
|
|
||||||
|
|
||||||
function rankOne_projections(RBn::GroupRing{G}, T::Type=Rational{Int}) where {G<:WreathProduct}
|
|
||||||
|
|
||||||
Bn = RBn.group
|
|
||||||
N = Bn.P.n
|
|
||||||
# projections as elements of the group rings RSₙ
|
|
||||||
Sn_rankOnePr = [rankOne_projections(
|
|
||||||
GroupRing(SymmetricGroup(i), collect(SymmetricGroup(i))))
|
|
||||||
for i in typeof(N)(1):N]
|
|
||||||
|
|
||||||
# embedding into group ring of BN
|
|
||||||
RN = GroupRing(Bn.N, collect(Bn.N))
|
|
||||||
|
|
||||||
sign, id = collect(characters(Bn.N.group))
|
|
||||||
# Bn.N = (Z/2Z)ⁿ characters corresponding to the first k coordinates:
|
|
||||||
BnN_orbits = Dict(i => orbit_selector(N, i, sign, id) for i in 0:N)
|
|
||||||
|
|
||||||
Q = Dict(i => RBn(g -> Bn(g), central_projection(RN, BnN_orbits[i], T)) for i in 0:N)
|
|
||||||
Q = Dict(key => GroupRings.dense(val) for (key, val) in Q)
|
|
||||||
|
|
||||||
all_projs = [Q[0]*RBn(g->Bn(g), p) for p in Sn_rankOnePr[N]]
|
|
||||||
|
|
||||||
r = collect(1:N)
|
|
||||||
for i in 1:N-1
|
|
||||||
first_emb = g->Bn(Generic.emb!(one(Bn.P), g, view(r, 1:i)))
|
|
||||||
last_emb = g->Bn(Generic.emb!(one(Bn.P), g, view(r, (i+1):N)))
|
|
||||||
|
|
||||||
Sk_first = (RBn(first_emb, p) for p in Sn_rankOnePr[i])
|
|
||||||
Sk_last = (RBn(last_emb, p) for p in Sn_rankOnePr[N-i])
|
|
||||||
|
|
||||||
append!(all_projs,
|
|
||||||
[Q[i]*p1*p2 for (p1,p2) in Base.product(Sk_first,Sk_last)])
|
|
||||||
end
|
|
||||||
|
|
||||||
append!(all_projs, [Q[N]*RBn(g->Bn(g), p) for p in Sn_rankOnePr[N]])
|
|
||||||
|
|
||||||
return all_projs
|
|
||||||
end
|
|
||||||
|
|
||||||
##############################################################################
|
|
||||||
#
|
|
||||||
# General Groups Misc
|
|
||||||
#
|
|
||||||
##############################################################################
|
|
||||||
|
|
||||||
"""
|
|
||||||
products(X::Vector{GroupElem}, Y::Vector{GroupElem}[, op=*])
|
|
||||||
Return a vector of all possible products (or `op(x,y)`), where `x ∈ X` and
|
|
||||||
`y ∈ Y`. You may change which operation is used by specifying `op` argument.
|
|
||||||
"""
|
|
||||||
function products(X::AbstractVector{T}, Y::AbstractVector{T}, op=*) where {T<:GroupElem}
|
|
||||||
result = Vector{T}()
|
|
||||||
seen = Set{T}()
|
|
||||||
sizehint!(result, length(X)*length(Y))
|
|
||||||
sizehint!(seen, length(X)*length(Y))
|
|
||||||
for x in X
|
|
||||||
for y in Y
|
|
||||||
z = op(x,y)
|
|
||||||
if !in(z, seen)
|
|
||||||
push!(seen, z)
|
|
||||||
push!(result, z)
|
|
||||||
end
|
|
||||||
end
|
|
||||||
end
|
|
||||||
return result
|
|
||||||
end
|
|
||||||
|
|
||||||
"""
|
|
||||||
generateGroup(gens::Vector{GroupElem}, r, [op=*])
|
|
||||||
Produce all elements of a group generated by elements in `gens` in ball of
|
|
||||||
radius `r` (word-length metric induced by `gens`). The binary operation can
|
|
||||||
be optionally specified.
|
|
||||||
"""
|
|
||||||
function generateGroup(gens::Vector{T}, r, op=*) where {T<:GroupElem}
|
|
||||||
n = 0
|
|
||||||
R = 1
|
|
||||||
elts = [one(first(gens)); gens]
|
|
||||||
while n ≠ length(elts) && R < r
|
|
||||||
# @show elts
|
|
||||||
R += 1
|
|
||||||
n = length(elts)
|
|
||||||
elts = products(gens, elts, op)
|
|
||||||
end
|
|
||||||
return elts
|
|
||||||
end
|
|
||||||
|
|
||||||
end # of module Projections
|
|
@ -1,287 +0,0 @@
|
|||||||
###############################################################################
|
|
||||||
#
|
|
||||||
# BlockDecomposition
|
|
||||||
#
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
struct BlockDecomposition{T<:AbstractArray{Float64, 2}, GEl<:GroupElem, P<:Generic.Perm}
|
|
||||||
orbits::Vector{Vector{Int}}
|
|
||||||
preps::Dict{GEl, P}
|
|
||||||
Uπs::Vector{T}
|
|
||||||
dims::Vector{Int}
|
|
||||||
end
|
|
||||||
|
|
||||||
function BlockDecomposition(RG::GroupRing, autS::Group; verbose=true)
|
|
||||||
verbose && @info "Decomposing basis of RG into orbits of" autS
|
|
||||||
@time orbs = orbit_decomposition(autS, RG.basis, RG.basis_dict)
|
|
||||||
@assert sum(length(o) for o in orbs) == length(RG.basis)
|
|
||||||
verbose && @info "The action has $(length(orbs)) orbits"
|
|
||||||
|
|
||||||
verbose && @info "Finding projections in the Group Ring of" autS
|
|
||||||
@time autS_mps = Projections.rankOne_projections(GroupRing(autS, collect(autS)))
|
|
||||||
|
|
||||||
verbose && @info "Finding AutS-action matrix representation"
|
|
||||||
@time preps = perm_reps(autS, RG.basis[1:size(RG.pm,1)], RG.basis_dict)
|
|
||||||
@time mreps = matrix_reps(preps)
|
|
||||||
|
|
||||||
verbose && @info "Computing the projection matrices Uπs"
|
|
||||||
@time Uπs = [orthSVD(matrix_repr(p, mreps)) for p in autS_mps]
|
|
||||||
|
|
||||||
multiplicities = size.(Uπs,2)
|
|
||||||
dimensions = [Int(p[one(autS)]*Int(order(autS))) for p in autS_mps]
|
|
||||||
if verbose
|
|
||||||
info_strs = ["",
|
|
||||||
lpad("multiplicities", 14) * " =" * join(lpad.(multiplicities, 4), ""),
|
|
||||||
lpad("dimensions", 14) * " =" * join(lpad.(dimensions, 4), "")
|
|
||||||
]
|
|
||||||
@info join(info_strs, "\n")
|
|
||||||
end
|
|
||||||
@assert dot(multiplicities, dimensions) == size(RG.pm,1)
|
|
||||||
|
|
||||||
return BlockDecomposition(orbs, preps, Uπs, dimensions)
|
|
||||||
end
|
|
||||||
|
|
||||||
function decimate(od::BlockDecomposition; verbose=true)
|
|
||||||
nzros = [i for i in 1:length(od.Uπs) if !isempty(od.Uπs[i])]
|
|
||||||
|
|
||||||
Us = sparsify!.(od.Uπs, eps(Float64) * 1e4, verbose = verbose)[nzros]
|
|
||||||
#dimensions of the corresponding Uπs:
|
|
||||||
dims = od.dims[nzros]
|
|
||||||
|
|
||||||
return BlockDecomposition(od.orbits, od.preps, Array{Float64}.(Us), dims)
|
|
||||||
end
|
|
||||||
|
|
||||||
function orthSVD(M::AbstractMatrix{T}) where {T<:AbstractFloat}
|
|
||||||
fact = svd(convert(Matrix{T}, M))
|
|
||||||
M_rank = sum(fact.S .> maximum(size(M)) * eps(T))
|
|
||||||
return fact.U[:, 1:M_rank]
|
|
||||||
end
|
|
||||||
|
|
||||||
orbit_decomposition(
|
|
||||||
G::Group,
|
|
||||||
E::AbstractVector,
|
|
||||||
rdict = GroupRings.reverse_dict(E);
|
|
||||||
op = ^,
|
|
||||||
) = orbit_decomposition(collect(G), E, rdict; op=op)
|
|
||||||
|
|
||||||
function orbit_decomposition(elts::AbstractVector{<:GroupElem}, E::AbstractVector, rdict=GroupRings.reverse_dict(E); op=^)
|
|
||||||
|
|
||||||
tovisit = trues(size(E));
|
|
||||||
orbits = Vector{Vector{Int}}()
|
|
||||||
|
|
||||||
orbit = zeros(Int, length(elts))
|
|
||||||
|
|
||||||
for i in eachindex(E)
|
|
||||||
if tovisit[i]
|
|
||||||
g = E[i]
|
|
||||||
Threads.@threads for j in eachindex(elts)
|
|
||||||
orbit[j] = rdict[op(g, elts[j])]
|
|
||||||
end
|
|
||||||
tovisit[orbit] .= false
|
|
||||||
push!(orbits, unique(orbit))
|
|
||||||
end
|
|
||||||
end
|
|
||||||
return orbits
|
|
||||||
end
|
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
#
|
|
||||||
# Sparsification
|
|
||||||
#
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
dens(M::SparseMatrixCSC) = nnz(M)/length(M)
|
|
||||||
dens(M::AbstractArray) = count(!iszero, M)/length(M)
|
|
||||||
|
|
||||||
function sparsify!(M::SparseMatrixCSC{Tv,Ti}, tol=eps(Tv); verbose=false) where {Tv,Ti}
|
|
||||||
|
|
||||||
densM = dens(M)
|
|
||||||
droptol!(M, tol)
|
|
||||||
|
|
||||||
verbose && @info(
|
|
||||||
"Sparsified density:",
|
|
||||||
rpad(densM, 20),
|
|
||||||
" → ",
|
|
||||||
rpad(dens(M), 20),
|
|
||||||
" ($(nnz(M)) non-zeros)"
|
|
||||||
)
|
|
||||||
|
|
||||||
return M
|
|
||||||
end
|
|
||||||
|
|
||||||
function sparsify!(M::AbstractArray{T}, tol=eps(T); verbose=false) where T
|
|
||||||
densM = dens(M)
|
|
||||||
clamp_small!(M, tol)
|
|
||||||
|
|
||||||
if verbose
|
|
||||||
@info("Sparsifying $(size(M))-matrix... \n $(rpad(densM, 20)) → $(rpad(dens(M),20))), ($(count(!iszero, M)) non-zeros)")
|
|
||||||
end
|
|
||||||
|
|
||||||
return sparse(M)
|
|
||||||
end
|
|
||||||
|
|
||||||
function clamp_small!(M::AbstractArray{T}, tol=eps(T)) where T
|
|
||||||
for n in eachindex(M)
|
|
||||||
if abs(M[n]) < tol
|
|
||||||
M[n] = zero(T)
|
|
||||||
end
|
|
||||||
end
|
|
||||||
return M
|
|
||||||
end
|
|
||||||
|
|
||||||
function sparsify(U::AbstractArray{T}, tol=eps(T); verbose=false) where T
|
|
||||||
return sparsify!(deepcopy(U), tol, verbose=verbose)
|
|
||||||
end
|
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
#
|
|
||||||
# perm-, matrix-, representations
|
|
||||||
#
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
function perm_repr(g::GroupElem, E::Vector, E_dict)
|
|
||||||
p = Vector{Int}(undef, length(E))
|
|
||||||
for (i,elt) in enumerate(E)
|
|
||||||
p[i] = E_dict[elt^g]
|
|
||||||
end
|
|
||||||
return p
|
|
||||||
end
|
|
||||||
|
|
||||||
function perm_reps(G::Group, E::Vector, E_rdict=GroupRings.reverse_dict(E))
|
|
||||||
elts = collect(G)
|
|
||||||
l = length(elts)
|
|
||||||
preps = Vector{Generic.Perm}(undef, l)
|
|
||||||
|
|
||||||
permG = SymmetricGroup(length(E))
|
|
||||||
|
|
||||||
Threads.@threads for i in 1:l
|
|
||||||
preps[i] = permG(PropertyT.perm_repr(elts[i], E, E_rdict), false)
|
|
||||||
end
|
|
||||||
|
|
||||||
return Dict(elts[i]=>preps[i] for i in 1:l)
|
|
||||||
end
|
|
||||||
|
|
||||||
function matrix_repr(x::GroupRingElem, mreps::Dict)
|
|
||||||
nzeros = findall(!iszero, x.coeffs)
|
|
||||||
return sum(x[i].*mreps[parent(x).basis[i]] for i in nzeros)
|
|
||||||
end
|
|
||||||
|
|
||||||
function matrix_reps(preps::Dict{T,Generic.Perm{I}}) where {T<:GroupElem, I<:Integer}
|
|
||||||
kk = collect(keys(preps))
|
|
||||||
mreps = Vector{SparseMatrixCSC{Float64, Int}}(undef, length(kk))
|
|
||||||
Threads.@threads for i in 1:length(kk)
|
|
||||||
mreps[i] = AbstractAlgebra.matrix_repr(preps[kk[i]])
|
|
||||||
end
|
|
||||||
return Dict(kk[i] => mreps[i] for i in 1:length(kk))
|
|
||||||
end
|
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
#
|
|
||||||
# actions
|
|
||||||
#
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
function Base.:^(y::GroupRingElem, g::GroupRingElem, op = ^)
|
|
||||||
res = parent(y)()
|
|
||||||
for elt in GroupRings.supp(g)
|
|
||||||
res += g[elt] * ^(y, elt, op)
|
|
||||||
end
|
|
||||||
return res
|
|
||||||
end
|
|
||||||
|
|
||||||
function Base.:^(y::GroupRingElem, g::GroupElem, op = ^)
|
|
||||||
RG = parent(y)
|
|
||||||
result = zero(RG, eltype(y.coeffs))
|
|
||||||
|
|
||||||
for (idx, c) in enumerate(y.coeffs)
|
|
||||||
if !iszero(c)
|
|
||||||
result[op(RG.basis[idx], g)] = c
|
|
||||||
end
|
|
||||||
end
|
|
||||||
return result
|
|
||||||
end
|
|
||||||
|
|
||||||
function Base.:^(
|
|
||||||
y::GroupRingElem{T,<:SparseVector},
|
|
||||||
g::GroupElem,
|
|
||||||
op = ^,
|
|
||||||
) where {T}
|
|
||||||
RG = parent(y)
|
|
||||||
index = [RG.basis_dict[op(RG.basis[idx], g)] for idx in y.coeffs.nzind]
|
|
||||||
|
|
||||||
result = GroupRingElem(sparsevec(index, y.coeffs.nzval, y.coeffs.n), RG)
|
|
||||||
|
|
||||||
return result
|
|
||||||
end
|
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
#
|
|
||||||
# perm && WreathProductElems actions: MatAlgElem
|
|
||||||
#
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
function Base.:^(A::MatAlgElem, p::Generic.Perm)
|
|
||||||
length(p.d) == size(A, 1) == size(A, 2) ||
|
|
||||||
throw("Can't act via $p on matrix of size $(size(A))")
|
|
||||||
result = similar(A)
|
|
||||||
@inbounds for i = 1:size(A, 1)
|
|
||||||
for j = 1:size(A, 2)
|
|
||||||
result[p[i], p[j]] = A[i, j] # action by permuting rows and colums/conjugation
|
|
||||||
end
|
|
||||||
end
|
|
||||||
return result
|
|
||||||
end
|
|
||||||
|
|
||||||
function Base.:^(A::MatAlgElem, g::WreathProductElem{N}) where {N}
|
|
||||||
# @assert N == size(A,1) == size(A,2)
|
|
||||||
flips = ntuple(i -> (g.n[i].d[1] == 1 && g.n[i].d[2] == 2 ? 1 : -1), N)
|
|
||||||
result = similar(A)
|
|
||||||
R = base_ring(parent(A))
|
|
||||||
tmp = R(1)
|
|
||||||
|
|
||||||
@inbounds for i = 1:size(A, 1)
|
|
||||||
for j = 1:size(A, 2)
|
|
||||||
x = A[i, j]
|
|
||||||
if flips[i] * flips[j] == 1
|
|
||||||
result[g.p[i], g.p[j]] = x
|
|
||||||
else
|
|
||||||
result[g.p[i], g.p[j]] = -x
|
|
||||||
end
|
|
||||||
end
|
|
||||||
end
|
|
||||||
return result
|
|
||||||
end
|
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
#
|
|
||||||
# perm && WreathProductElems actions: Automorphism
|
|
||||||
#
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
function Base.:^(a::Automorphism, g::GroupElem)
|
|
||||||
Ag = parent(a)(g)
|
|
||||||
Ag_inv = inv(Ag)
|
|
||||||
res = append!(Ag, a, Ag_inv)
|
|
||||||
return Groups.freereduce!(res)
|
|
||||||
end
|
|
||||||
|
|
||||||
(A::AutGroup)(p::Generic.Perm) = A(Groups.AutSymbol(p))
|
|
||||||
|
|
||||||
function (A::AutGroup)(g::WreathProductElem)
|
|
||||||
isa(A.objectGroup, FreeGroup) || throw("Not an Aut(Fₙ)")
|
|
||||||
parent(g).P.n == length(A.objectGroup.gens) ||
|
|
||||||
throw("No natural embedding of $(parent(g)) into $A")
|
|
||||||
elt = one(A)
|
|
||||||
Id = one(parent(g.n.elts[1]))
|
|
||||||
for i = 1:length(g.p.d)
|
|
||||||
if g.n.elts[i] != Id
|
|
||||||
push!(elt, Groups.flip(i))
|
|
||||||
end
|
|
||||||
end
|
|
||||||
push!(elt, Groups.AutSymbol(g.p))
|
|
||||||
return elt
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
||||||
# fallback:
|
|
||||||
Base.one(p::Generic.Perm) = Perm(length(p.d))
|
|
Loading…
Reference in New Issue
Block a user