1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-12-27 10:50:29 +01:00

Allow generation of SL(n,p) (matrices over Z/p)

This commit is contained in:
kalmar 2017-03-13 11:11:09 +01:00
parent 48645a7b5c
commit 9b8c3722b3

77
SL3Z.jl
View File

@ -1,25 +1,82 @@
using JLD
using JuMP
import Primes: isprime
import SCS: SCSSolver
import Mosek: MosekSolver
using Mods
using Groups
using ProgressMeter
function SL₃ℤ_generatingset()
function SL_generatingset(n::Int)
function E(i::Int, j::Int, N::Int=3)
@assert i≠j
k = eye(N)
k[i,j] = 1
return k
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
S = [E(i,j,N=n) for (i,j) in indexing];
S = vcat(S, [convert(Array{Int,2},x') for x in S]);
S = vcat(S, [convert(Array{Int,2},inv(x)) for x in S]);
return unique(S)
end
function E(i::Int, j::Int; val=1, N::Int=3, mod=Inf)
@assert i≠j
m = eye(Int, N)
m[i,j] = val
if mod == Inf
return m
else
return [Mod(x,mod) for x in m]
end
end
function cofactor(i,j,M)
z1 = ones(Bool,size(M,1))
z1[i] = false
z2 = ones(Bool,size(M,2))
z2[j] = false
return M[z1,z2]
end
import Base.LinAlg.det
function det(M::Array{Mod,2})
if size(M,1) size(M,2)
d = Mod(0,M[1,1].mod)
elseif size(M,1) == 2
d = M[1,1]*M[2,2] - M[1,2]*M[2,1]
else
d = zero(eltype(M))
for i in 1:size(M,1)
d += (-1)^(i+1)*M[i,1]*det(cofactor(i,1,M))
end
end
# @show (M, d)
return d
end
S = [E(1,2), E(1,3), E(2,3)];
S = vcat(S, [x' for x in S]);
S = vcat(S, [inv(x) for x in S]);
return S
function adjugate(M)
K = similar(M)
for i in 1:size(M,1), j in 1:size(M,2)
K[j,i] = (-1)^(i+j)*det(cofactor(i,j,M))
end
return K
end
import Base: inv, one, zero, *
one(::Type{Mod}) = 1
zero(::Type{Mod}) = 0
zero(x::Mod) = Mod(x.mod)
function inv(M::Array{Mod,2})
d = det(M)
d 0*d || thow(ArgumentError("Matrix is not invertible!"))
return inv(det(M))*adjugate(M)
return adjugate(M)
end
function prepare_Δ_sdp_constraints(identity, S)