mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-26 17:05:27 +01:00
Allow generation of SL(n,p) (matrices over Z/p)
This commit is contained in:
parent
48645a7b5c
commit
9b8c3722b3
75
SL3Z.jl
75
SL3Z.jl
@ -1,25 +1,82 @@
|
|||||||
using JLD
|
using JLD
|
||||||
using JuMP
|
using JuMP
|
||||||
|
import Primes: isprime
|
||||||
import SCS: SCSSolver
|
import SCS: SCSSolver
|
||||||
import Mosek: MosekSolver
|
import Mosek: MosekSolver
|
||||||
|
|
||||||
|
using Mods
|
||||||
|
|
||||||
using Groups
|
using Groups
|
||||||
using ProgressMeter
|
using ProgressMeter
|
||||||
|
|
||||||
|
|
||||||
function SL₃ℤ_generatingset()
|
function SL_generatingset(n::Int)
|
||||||
|
|
||||||
function E(i::Int, j::Int, N::Int=3)
|
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
||||||
|
|
||||||
|
S = [E(i,j,N=n) for (i,j) in indexing];
|
||||||
|
S = vcat(S, [convert(Array{Int,2},x') for x in S]);
|
||||||
|
S = vcat(S, [convert(Array{Int,2},inv(x)) for x in S]);
|
||||||
|
return unique(S)
|
||||||
|
end
|
||||||
|
|
||||||
|
function E(i::Int, j::Int; val=1, N::Int=3, mod=Inf)
|
||||||
@assert i≠j
|
@assert i≠j
|
||||||
k = eye(N)
|
m = eye(Int, N)
|
||||||
k[i,j] = 1
|
m[i,j] = val
|
||||||
return k
|
if mod == Inf
|
||||||
|
return m
|
||||||
|
else
|
||||||
|
return [Mod(x,mod) for x in m]
|
||||||
end
|
end
|
||||||
|
end
|
||||||
|
|
||||||
S = [E(1,2), E(1,3), E(2,3)];
|
function cofactor(i,j,M)
|
||||||
S = vcat(S, [x' for x in S]);
|
z1 = ones(Bool,size(M,1))
|
||||||
S = vcat(S, [inv(x) for x in S]);
|
z1[i] = false
|
||||||
return S
|
|
||||||
|
z2 = ones(Bool,size(M,2))
|
||||||
|
z2[j] = false
|
||||||
|
|
||||||
|
return M[z1,z2]
|
||||||
|
end
|
||||||
|
|
||||||
|
import Base.LinAlg.det
|
||||||
|
|
||||||
|
function det(M::Array{Mod,2})
|
||||||
|
if size(M,1) ≠ size(M,2)
|
||||||
|
d = Mod(0,M[1,1].mod)
|
||||||
|
elseif size(M,1) == 2
|
||||||
|
d = M[1,1]*M[2,2] - M[1,2]*M[2,1]
|
||||||
|
else
|
||||||
|
d = zero(eltype(M))
|
||||||
|
for i in 1:size(M,1)
|
||||||
|
d += (-1)^(i+1)*M[i,1]*det(cofactor(i,1,M))
|
||||||
|
end
|
||||||
|
end
|
||||||
|
# @show (M, d)
|
||||||
|
return d
|
||||||
|
end
|
||||||
|
|
||||||
|
function adjugate(M)
|
||||||
|
K = similar(M)
|
||||||
|
for i in 1:size(M,1), j in 1:size(M,2)
|
||||||
|
K[j,i] = (-1)^(i+j)*det(cofactor(i,j,M))
|
||||||
|
end
|
||||||
|
return K
|
||||||
|
end
|
||||||
|
|
||||||
|
import Base: inv, one, zero, *
|
||||||
|
|
||||||
|
one(::Type{Mod}) = 1
|
||||||
|
zero(::Type{Mod}) = 0
|
||||||
|
zero(x::Mod) = Mod(x.mod)
|
||||||
|
|
||||||
|
function inv(M::Array{Mod,2})
|
||||||
|
d = det(M)
|
||||||
|
d ≠ 0*d || thow(ArgumentError("Matrix is not invertible!"))
|
||||||
|
return inv(det(M))*adjugate(M)
|
||||||
|
return adjugate(M)
|
||||||
end
|
end
|
||||||
|
|
||||||
function prepare_Δ_sdp_constraints(identity, S)
|
function prepare_Δ_sdp_constraints(identity, S)
|
||||||
|
Loading…
Reference in New Issue
Block a user