mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-30 01:55:28 +01:00
Allow generation of SL(n,p) (matrices over Z/p)
This commit is contained in:
parent
48645a7b5c
commit
9b8c3722b3
77
SL3Z.jl
77
SL3Z.jl
@ -1,25 +1,82 @@
|
||||
using JLD
|
||||
using JuMP
|
||||
import Primes: isprime
|
||||
import SCS: SCSSolver
|
||||
import Mosek: MosekSolver
|
||||
|
||||
using Mods
|
||||
|
||||
using Groups
|
||||
using ProgressMeter
|
||||
|
||||
|
||||
function SL₃ℤ_generatingset()
|
||||
function SL_generatingset(n::Int)
|
||||
|
||||
function E(i::Int, j::Int, N::Int=3)
|
||||
@assert i≠j
|
||||
k = eye(N)
|
||||
k[i,j] = 1
|
||||
return k
|
||||
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
||||
|
||||
S = [E(i,j,N=n) for (i,j) in indexing];
|
||||
S = vcat(S, [convert(Array{Int,2},x') for x in S]);
|
||||
S = vcat(S, [convert(Array{Int,2},inv(x)) for x in S]);
|
||||
return unique(S)
|
||||
end
|
||||
|
||||
S = [E(1,2), E(1,3), E(2,3)];
|
||||
S = vcat(S, [x' for x in S]);
|
||||
S = vcat(S, [inv(x) for x in S]);
|
||||
return S
|
||||
function E(i::Int, j::Int; val=1, N::Int=3, mod=Inf)
|
||||
@assert i≠j
|
||||
m = eye(Int, N)
|
||||
m[i,j] = val
|
||||
if mod == Inf
|
||||
return m
|
||||
else
|
||||
return [Mod(x,mod) for x in m]
|
||||
end
|
||||
end
|
||||
|
||||
function cofactor(i,j,M)
|
||||
z1 = ones(Bool,size(M,1))
|
||||
z1[i] = false
|
||||
|
||||
z2 = ones(Bool,size(M,2))
|
||||
z2[j] = false
|
||||
|
||||
return M[z1,z2]
|
||||
end
|
||||
|
||||
import Base.LinAlg.det
|
||||
|
||||
function det(M::Array{Mod,2})
|
||||
if size(M,1) ≠ size(M,2)
|
||||
d = Mod(0,M[1,1].mod)
|
||||
elseif size(M,1) == 2
|
||||
d = M[1,1]*M[2,2] - M[1,2]*M[2,1]
|
||||
else
|
||||
d = zero(eltype(M))
|
||||
for i in 1:size(M,1)
|
||||
d += (-1)^(i+1)*M[i,1]*det(cofactor(i,1,M))
|
||||
end
|
||||
end
|
||||
# @show (M, d)
|
||||
return d
|
||||
end
|
||||
|
||||
function adjugate(M)
|
||||
K = similar(M)
|
||||
for i in 1:size(M,1), j in 1:size(M,2)
|
||||
K[j,i] = (-1)^(i+j)*det(cofactor(i,j,M))
|
||||
end
|
||||
return K
|
||||
end
|
||||
|
||||
import Base: inv, one, zero, *
|
||||
|
||||
one(::Type{Mod}) = 1
|
||||
zero(::Type{Mod}) = 0
|
||||
zero(x::Mod) = Mod(x.mod)
|
||||
|
||||
function inv(M::Array{Mod,2})
|
||||
d = det(M)
|
||||
d ≠ 0*d || thow(ArgumentError("Matrix is not invertible!"))
|
||||
return inv(det(M))*adjugate(M)
|
||||
return adjugate(M)
|
||||
end
|
||||
|
||||
function prepare_Δ_sdp_constraints(identity, S)
|
||||
|
Loading…
Reference in New Issue
Block a user