1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-27 01:10:28 +01:00

fix nature of idempotents

This commit is contained in:
kalmarek 2018-04-09 11:55:38 +02:00
parent a0cc9d62c9
commit 9d2140b5a8

View File

@ -83,15 +83,15 @@ function central_projection(RG::GroupRing, chi::AbstractCharacter, T::Type=Ratio
return result return result
end end
function idempotents(RG::GroupRing{Generic.PermGroup{S}}, T::Type=Rational{S}) where S<:Integer function idempotents(RG::GroupRing{Generic.PermGroup{S}}, T::Type=Rational{Int}) where S<:Integer
if RG.group.n == 1 if RG.group.n == 1
return GroupRingElem{T}[one(RG,T)] return GroupRingElem{T}[one(RG,T)]
elseif RG.group.n == 2 elseif RG.group.n == 2
Id = one(RG,T) Id = one(RG,T)
transp = convert(T, RG(RG.group([2,1]))) transp = convert(T, RG(RG.group([2,1])))
return GroupRingElem{T}[1//2*(Id + transp), 1//2*(Id - transp)] return GroupRingElem{T}[1//2*(Id + transp), 1//2*(Id - transp)]
end end
projs = Vector{Vector{Generic.perm{S}}}() projs = Vector{Vector{Generic.perm{S}}}()
for l in 2:RG.group.n for l in 2:RG.group.n
u = RG.group([circshift([i for i in 1:l], -1); [i for i in l+1:RG.group.n]]) u = RG.group([circshift([i for i in 1:l], -1); [i for i in l+1:RG.group.n]])