mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-19 07:20:28 +01:00
add scripts/PRA_has_T.jl
This commit is contained in:
parent
2aaa999bc8
commit
a596fd78f5
162
scripts/PRA_has_T.jl
Normal file
162
scripts/PRA_has_T.jl
Normal file
@ -0,0 +1,162 @@
|
|||||||
|
using LinearAlgebra
|
||||||
|
BLAS.set_num_threads(4)
|
||||||
|
ENV["OMP_NUM_THREADS"] = 4
|
||||||
|
include(joinpath(@__DIR__, "../test/optimizers.jl"))
|
||||||
|
using SCS_MKL_jll
|
||||||
|
|
||||||
|
using Groups
|
||||||
|
import Groups.MatrixGroups
|
||||||
|
|
||||||
|
using PropertyT
|
||||||
|
|
||||||
|
import PropertyT.SW as SW
|
||||||
|
using PropertyT.PG
|
||||||
|
using PropertyT.SA
|
||||||
|
|
||||||
|
include(joinpath(@__DIR__, "argparse.jl"))
|
||||||
|
|
||||||
|
const N = parsed_args["N"]
|
||||||
|
const HALFRADIUS = parsed_args["halfradius"]
|
||||||
|
const UPPER_BOUND = parsed_args["upper_bound"]
|
||||||
|
|
||||||
|
# fixes/hacks
|
||||||
|
import Groups.KnuthBendix
|
||||||
|
KnuthBendix.ordering(o::KnuthBendix.WordOrdering) = o
|
||||||
|
function KnuthBendix.rewrite!(
|
||||||
|
u::KnuthBendix.AbstractWord,
|
||||||
|
w::KnuthBendix.AbstractWord,
|
||||||
|
o::KnuthBendix.WordOrdering,
|
||||||
|
)
|
||||||
|
return KnuthBendix.rewrite!(u, w, KnuthBendix.alphabet(o))
|
||||||
|
end
|
||||||
|
|
||||||
|
struct Letter{T} <: Groups.GSymbol # letter of an Alphabet
|
||||||
|
elt::T
|
||||||
|
end
|
||||||
|
|
||||||
|
Base.show(io::IO, tt::Letter) = show(io, tt.elt)
|
||||||
|
Base.inv(tt::Letter) = Letter(inv(tt.elt))
|
||||||
|
Base.:(==)(tt::Letter, ss::Letter) = tt.elt == ss.elt
|
||||||
|
Base.hash(tt::Letter, h::UInt) = hash(tt.elt, hash(Letter, h))
|
||||||
|
|
||||||
|
Base.Base.@propagate_inbounds function Groups.evaluate!(
|
||||||
|
v::Tuple{Vararg{T,N}},
|
||||||
|
tt::Letter,
|
||||||
|
tmp = one(first(v)),
|
||||||
|
) where {T,N}
|
||||||
|
return Groups.evaluate!(v, tt.elt, tmp)
|
||||||
|
end
|
||||||
|
|
||||||
|
function PropertyT._conj(tt::Letter, g)
|
||||||
|
G = parent(tt.elt)
|
||||||
|
A = alphabet(G)
|
||||||
|
|
||||||
|
w = [A[PropertyT._conj(A[l], g)] for l in word(tt.elt)]
|
||||||
|
return Letter(G(w))
|
||||||
|
end
|
||||||
|
|
||||||
|
G = let G = SpecialAutomorphismGroup(FreeGroup(N + 1))
|
||||||
|
A = alphabet(G)
|
||||||
|
lambdas = [Groups.λ(1, i) for i in 2:N+1]
|
||||||
|
append!(lambdas, [Groups.λ(i, 1) for i in 2:N+1])
|
||||||
|
rhos = [Groups.ϱ(1, i) for i in 2:N+1]
|
||||||
|
append!(rhos, [Groups.ϱ(i, 1) for i in 2:N+1])
|
||||||
|
|
||||||
|
_alph = eltype(G)[]
|
||||||
|
|
||||||
|
for i in 2:N+1
|
||||||
|
for j in 2:N+1
|
||||||
|
i == j && continue
|
||||||
|
g = G([A[Groups.ϱ(1, i)], A[Groups.ϱ(j, 1)]])
|
||||||
|
h = G([A[Groups.λ(1, i)], A[Groups.λ(j, 1)]])
|
||||||
|
push!(_alph, g, h)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
alph = Letter.(_alph)
|
||||||
|
AutomorphismGroup(
|
||||||
|
FreeGroup(N + 1),
|
||||||
|
alph,
|
||||||
|
KnuthBendix.LenLex(Groups.Alphabet(alph)),
|
||||||
|
Groups.domain(one(G)),
|
||||||
|
)
|
||||||
|
end
|
||||||
|
# @info "Running Δ² - λ·Δ sum of squares decomposition for " G
|
||||||
|
|
||||||
|
@info "computing group algebra structure"
|
||||||
|
RG, S, sizes = @time PropertyT.group_algebra(G, halfradius = HALFRADIUS)
|
||||||
|
|
||||||
|
@info "computing WedderburnDecomposition"
|
||||||
|
wd = let RG = RG, N = N
|
||||||
|
G = StarAlgebras.object(RG)
|
||||||
|
P = PermGroup(perm"(2,3)", Perm([1; 1 .+ circshift(1:N, -1)]))
|
||||||
|
Σ = Groups.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
|
||||||
|
act = PropertyT.action_by_conjugation(G, P)
|
||||||
|
|
||||||
|
wdfl = @time SW.WedderburnDecomposition(
|
||||||
|
Float64,
|
||||||
|
P,
|
||||||
|
act,
|
||||||
|
basis(RG),
|
||||||
|
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[HALFRADIUS]]),
|
||||||
|
)
|
||||||
|
end
|
||||||
|
@info wd
|
||||||
|
|
||||||
|
Δ = RG(length(S)) - sum(RG(s) for s in S)
|
||||||
|
elt = Δ^2;
|
||||||
|
unit = Δ;
|
||||||
|
warm = nothing
|
||||||
|
|
||||||
|
@info "defining optimization problem"
|
||||||
|
@time model, varP = PropertyT.sos_problem_primal(
|
||||||
|
elt,
|
||||||
|
unit,
|
||||||
|
wd;
|
||||||
|
upper_bound = UPPER_BOUND,
|
||||||
|
augmented = true,
|
||||||
|
show_progress = true,
|
||||||
|
)
|
||||||
|
|
||||||
|
let status = JuMP.OPTIMIZE_NOT_CALLED, warm = warm, eps = 1e-10
|
||||||
|
certified, λ = false, 0.0
|
||||||
|
while status ≠ JuMP.OPTIMAL
|
||||||
|
@time status, warm = PropertyT.solve(
|
||||||
|
model,
|
||||||
|
scs_optimizer(;
|
||||||
|
linear_solver = SCS.MKLDirectSolver,
|
||||||
|
eps = eps,
|
||||||
|
max_iters = N * 10_000,
|
||||||
|
accel = 50,
|
||||||
|
alpha = 1.95,
|
||||||
|
),
|
||||||
|
warm,
|
||||||
|
)
|
||||||
|
|
||||||
|
@info "reconstructing the solution"
|
||||||
|
Q = @time let wd = wd, Ps = [JuMP.value.(P) for P in varP], eps = 1e-10
|
||||||
|
PropertyT.__droptol!.(Ps, 100eps)
|
||||||
|
Qs = real.(sqrt.(Ps))
|
||||||
|
PropertyT.__droptol!.(Qs, eps)
|
||||||
|
|
||||||
|
PropertyT.reconstruct(Qs, wd)
|
||||||
|
end
|
||||||
|
|
||||||
|
@info "certifying the solution"
|
||||||
|
certified, λ = PropertyT.certify_solution(
|
||||||
|
elt,
|
||||||
|
unit,
|
||||||
|
JuMP.objective_value(model),
|
||||||
|
Q;
|
||||||
|
halfradius = HALFRADIUS,
|
||||||
|
augmented = true,
|
||||||
|
)
|
||||||
|
end
|
||||||
|
|
||||||
|
if certified && λ > 0
|
||||||
|
Κ(λ, S) = round(sqrt(2λ / length(S)), Base.RoundDown; digits = 5)
|
||||||
|
@info "Certified result: $G has property (T):" N λ Κ(λ, S)
|
||||||
|
else
|
||||||
|
@info "Could NOT certify the result:" certified λ
|
||||||
|
end
|
||||||
|
end
|
Loading…
Reference in New Issue
Block a user