1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-19 07:20:28 +01:00

add scripts/PRA_has_T.jl

This commit is contained in:
Marek Kaluba 2024-02-27 18:14:59 +01:00
parent 2aaa999bc8
commit a596fd78f5
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15

162
scripts/PRA_has_T.jl Normal file
View File

@ -0,0 +1,162 @@
using LinearAlgebra
BLAS.set_num_threads(4)
ENV["OMP_NUM_THREADS"] = 4
include(joinpath(@__DIR__, "../test/optimizers.jl"))
using SCS_MKL_jll
using Groups
import Groups.MatrixGroups
using PropertyT
import PropertyT.SW as SW
using PropertyT.PG
using PropertyT.SA
include(joinpath(@__DIR__, "argparse.jl"))
const N = parsed_args["N"]
const HALFRADIUS = parsed_args["halfradius"]
const UPPER_BOUND = parsed_args["upper_bound"]
# fixes/hacks
import Groups.KnuthBendix
KnuthBendix.ordering(o::KnuthBendix.WordOrdering) = o
function KnuthBendix.rewrite!(
u::KnuthBendix.AbstractWord,
w::KnuthBendix.AbstractWord,
o::KnuthBendix.WordOrdering,
)
return KnuthBendix.rewrite!(u, w, KnuthBendix.alphabet(o))
end
struct Letter{T} <: Groups.GSymbol # letter of an Alphabet
elt::T
end
Base.show(io::IO, tt::Letter) = show(io, tt.elt)
Base.inv(tt::Letter) = Letter(inv(tt.elt))
Base.:(==)(tt::Letter, ss::Letter) = tt.elt == ss.elt
Base.hash(tt::Letter, h::UInt) = hash(tt.elt, hash(Letter, h))
Base.Base.@propagate_inbounds function Groups.evaluate!(
v::Tuple{Vararg{T,N}},
tt::Letter,
tmp = one(first(v)),
) where {T,N}
return Groups.evaluate!(v, tt.elt, tmp)
end
function PropertyT._conj(tt::Letter, g)
G = parent(tt.elt)
A = alphabet(G)
w = [A[PropertyT._conj(A[l], g)] for l in word(tt.elt)]
return Letter(G(w))
end
G = let G = SpecialAutomorphismGroup(FreeGroup(N + 1))
A = alphabet(G)
lambdas = [Groups.λ(1, i) for i in 2:N+1]
append!(lambdas, [Groups.λ(i, 1) for i in 2:N+1])
rhos = [Groups.ϱ(1, i) for i in 2:N+1]
append!(rhos, [Groups.ϱ(i, 1) for i in 2:N+1])
_alph = eltype(G)[]
for i in 2:N+1
for j in 2:N+1
i == j && continue
g = G([A[Groups.ϱ(1, i)], A[Groups.ϱ(j, 1)]])
h = G([A[Groups.λ(1, i)], A[Groups.λ(j, 1)]])
push!(_alph, g, h)
end
end
alph = Letter.(_alph)
AutomorphismGroup(
FreeGroup(N + 1),
alph,
KnuthBendix.LenLex(Groups.Alphabet(alph)),
Groups.domain(one(G)),
)
end
# @info "Running Δ² - λ·Δ sum of squares decomposition for " G
@info "computing group algebra structure"
RG, S, sizes = @time PropertyT.group_algebra(G, halfradius = HALFRADIUS)
@info "computing WedderburnDecomposition"
wd = let RG = RG, N = N
G = StarAlgebras.object(RG)
P = PermGroup(perm"(2,3)", Perm([1; 1 .+ circshift(1:N, -1)]))
Σ = Groups.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(G, P)
wdfl = @time SW.WedderburnDecomposition(
Float64,
P,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[HALFRADIUS]]),
)
end
@info wd
Δ = RG(length(S)) - sum(RG(s) for s in S)
elt = Δ^2;
unit = Δ;
warm = nothing
@info "defining optimization problem"
@time model, varP = PropertyT.sos_problem_primal(
elt,
unit,
wd;
upper_bound = UPPER_BOUND,
augmented = true,
show_progress = true,
)
let status = JuMP.OPTIMIZE_NOT_CALLED, warm = warm, eps = 1e-10
certified, λ = false, 0.0
while status JuMP.OPTIMAL
@time status, warm = PropertyT.solve(
model,
scs_optimizer(;
linear_solver = SCS.MKLDirectSolver,
eps = eps,
max_iters = N * 10_000,
accel = 50,
alpha = 1.95,
),
warm,
)
@info "reconstructing the solution"
Q = @time let wd = wd, Ps = [JuMP.value.(P) for P in varP], eps = 1e-10
PropertyT.__droptol!.(Ps, 100eps)
Qs = real.(sqrt.(Ps))
PropertyT.__droptol!.(Qs, eps)
PropertyT.reconstruct(Qs, wd)
end
@info "certifying the solution"
certified, λ = PropertyT.certify_solution(
elt,
unit,
JuMP.objective_value(model),
Q;
halfradius = HALFRADIUS,
augmented = true,
)
end
if certified && λ > 0
Κ(λ, S) = round(sqrt(2λ / length(S)), Base.RoundDown; digits = 5)
@info "Certified result: $G has property (T):" N λ Κ(λ, S)
else
@info "Could NOT certify the result:" certified λ
end
end