mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-19 07:20:28 +01:00
lots of re-formatting
This commit is contained in:
parent
a1de0ecc85
commit
a5f5a4ea35
9
.JuliaFormatter.toml
Normal file
9
.JuliaFormatter.toml
Normal file
@ -0,0 +1,9 @@
|
||||
# Configuration file for JuliaFormatter.jl
|
||||
# For more information, see: https://domluna.github.io/JuliaFormatter.jl/stable/config/
|
||||
|
||||
always_for_in = true
|
||||
always_use_return = true
|
||||
margin = 80
|
||||
remove_extra_newlines = true
|
||||
separate_kwargs_with_semicolon = true
|
||||
short_to_long_function_def = true
|
@ -29,14 +29,14 @@ include("actions/actions.jl")
|
||||
function group_algebra(G::Groups.Group, S = gens(G); halfradius::Integer)
|
||||
S = union!(S, inv.(S))
|
||||
@info "generating wl-metric ball of radius $(2halfradius)"
|
||||
@time E, sizes = Groups.wlmetric_ball(S, radius=2halfradius)
|
||||
@time E, sizes = Groups.wlmetric_ball(S; radius = 2halfradius)
|
||||
@info "sizes = $(sizes)"
|
||||
@info "computing the *-algebra structure for G"
|
||||
@time RG = StarAlgebras.StarAlgebra(
|
||||
G,
|
||||
StarAlgebras.Basis{UInt32}(E),
|
||||
(sizes[halfradius], sizes[halfradius]),
|
||||
precompute=false,
|
||||
(sizes[halfradius], sizes[halfradius]);
|
||||
precompute = false,
|
||||
)
|
||||
return RG, S, sizes
|
||||
end
|
||||
|
@ -1,5 +1,4 @@
|
||||
import SymbolicWedderburn.action
|
||||
StarAlgebras.star(g::Groups.GroupElement) = inv(g)
|
||||
|
||||
include("alphabet_permutation.jl")
|
||||
|
||||
@ -10,7 +9,7 @@ include("autfn_conjugation.jl")
|
||||
function SymbolicWedderburn.action(
|
||||
act::SymbolicWedderburn.ByPermutations,
|
||||
g::Groups.GroupElement,
|
||||
α::StarAlgebras.AlgebraElement
|
||||
α::StarAlgebras.AlgebraElement,
|
||||
)
|
||||
res = StarAlgebras.zero!(similar(α))
|
||||
B = basis(parent(α))
|
||||
|
@ -35,7 +35,11 @@ function __sos_via_sqr!(
|
||||
return res
|
||||
end
|
||||
|
||||
function __sos_via_cnstr!(res::StarAlgebras.AlgebraElement, Q²::AbstractMatrix, cnstrs)
|
||||
function __sos_via_cnstr!(
|
||||
res::StarAlgebras.AlgebraElement,
|
||||
Q²::AbstractMatrix,
|
||||
cnstrs,
|
||||
)
|
||||
StarAlgebras.zero!(res)
|
||||
for (g, A_g) in cnstrs
|
||||
res[g] = dot(A_g, Q²)
|
||||
@ -43,10 +47,14 @@ function __sos_via_cnstr!(res::StarAlgebras.AlgebraElement, Q²::AbstractMatrix,
|
||||
return res
|
||||
end
|
||||
|
||||
function compute_sos(A::StarAlgebras.StarAlgebra, Q::AbstractMatrix; augmented::Bool)
|
||||
function compute_sos(
|
||||
A::StarAlgebras.StarAlgebra,
|
||||
Q::AbstractMatrix;
|
||||
augmented::Bool,
|
||||
)
|
||||
Q² = Q' * Q
|
||||
res = StarAlgebras.AlgebraElement(zeros(eltype(Q²), length(basis(A))), A)
|
||||
res = __sos_via_sqr!(res, Q², augmented=augmented)
|
||||
res = __sos_via_sqr!(res, Q²; augmented = augmented)
|
||||
return res
|
||||
end
|
||||
|
||||
@ -80,13 +88,12 @@ function sufficient_λ(
|
||||
order_unit::StarAlgebras.AlgebraElement,
|
||||
λ,
|
||||
sos::StarAlgebras.AlgebraElement;
|
||||
halfradius
|
||||
halfradius,
|
||||
)
|
||||
|
||||
@assert parent(elt) === parent(order_unit) == parent(sos)
|
||||
residual = (elt - λ * order_unit) - sos
|
||||
|
||||
return sufficient_λ(residual, λ; halfradius=halfradius)
|
||||
return sufficient_λ(residual, λ; halfradius = halfradius)
|
||||
end
|
||||
|
||||
function certify_solution(
|
||||
@ -95,17 +102,18 @@ function certify_solution(
|
||||
λ,
|
||||
Q::AbstractMatrix{<:AbstractFloat};
|
||||
halfradius,
|
||||
augmented=iszero(StarAlgebras.aug(elt)) && iszero(StarAlgebras.aug(orderunit))
|
||||
augmented = iszero(StarAlgebras.aug(elt)) &&
|
||||
iszero(StarAlgebras.aug(orderunit)),
|
||||
)
|
||||
|
||||
should_we_augment = !augmented && StarAlgebras.aug(elt) == StarAlgebras.aug(orderunit) == 0
|
||||
should_we_augment =
|
||||
!augmented && StarAlgebras.aug(elt) == StarAlgebras.aug(orderunit) == 0
|
||||
|
||||
Q = should_we_augment ? augment_columns!(Q) : Q
|
||||
@time sos = compute_sos(parent(elt), Q, augmented=augmented)
|
||||
@time sos = compute_sos(parent(elt), Q; augmented = augmented)
|
||||
|
||||
@info "Checking in $(eltype(sos)) arithmetic with" λ
|
||||
|
||||
λ_flpoint = sufficient_λ(elt, orderunit, λ, sos, halfradius=halfradius)
|
||||
λ_flpoint = sufficient_λ(elt, orderunit, λ, sos; halfradius = halfradius)
|
||||
|
||||
if λ_flpoint ≤ 0
|
||||
return false, λ_flpoint
|
||||
@ -122,16 +130,16 @@ function certify_solution(
|
||||
check_augmented || @error(
|
||||
"Augmentation failed! The following numbers are not certified!"
|
||||
)
|
||||
sos_int = compute_sos(parent(elt), Q_int; augmented=augmented)
|
||||
sos_int = compute_sos(parent(elt), Q_int; augmented = augmented)
|
||||
check_augmented, sos_int
|
||||
else
|
||||
true, compute_sos(parent(elt), Q_int, augmented=augmented)
|
||||
true, compute_sos(parent(elt), Q_int; augmented = augmented)
|
||||
end
|
||||
|
||||
@info "Checking in $(eltype(sos_int)) arithmetic with" λ_int
|
||||
|
||||
λ_certified =
|
||||
sufficient_λ(elt, orderunit, λ_int, sos_int, halfradius=halfradius)
|
||||
sufficient_λ(elt, orderunit, λ_int, sos_int; halfradius = halfradius)
|
||||
|
||||
return check && inf(λ_certified) > 0.0, inf(λ_certified)
|
||||
return check && inf(λ_certified) > 0.0, λ_certified
|
||||
end
|
||||
|
@ -28,7 +28,12 @@ struct ConstraintMatrix{T,I} <: AbstractMatrix{T}
|
||||
size::Tuple{Int,Int}
|
||||
val::T
|
||||
|
||||
function ConstraintMatrix{T}(nzeros::AbstractArray{<:Integer}, n, m, val) where {T}
|
||||
function ConstraintMatrix{T}(
|
||||
nzeros::AbstractArray{<:Integer},
|
||||
n,
|
||||
m,
|
||||
val,
|
||||
) where {T}
|
||||
@assert n ≥ 1
|
||||
@assert m ≥ 1
|
||||
|
||||
@ -45,8 +50,14 @@ struct ConstraintMatrix{T,I} <: AbstractMatrix{T}
|
||||
end
|
||||
end
|
||||
|
||||
ConstraintMatrix(nzeros::AbstractArray{<:Integer}, n, m, val::T) where {T} =
|
||||
ConstraintMatrix{T}(nzeros, n, m, val)
|
||||
function ConstraintMatrix(
|
||||
nzeros::AbstractArray{<:Integer},
|
||||
n,
|
||||
m,
|
||||
val::T,
|
||||
) where {T}
|
||||
return ConstraintMatrix{T}(nzeros, n, m, val)
|
||||
end
|
||||
|
||||
Base.size(cm::ConstraintMatrix) = cm.size
|
||||
|
||||
@ -80,7 +91,7 @@ Base.eltype(::Type{NZPairsIter{T}}) where {T} = Pair{Int,T}
|
||||
Base.IteratorSize(::Type{<:NZPairsIter}) = Base.SizeUnknown()
|
||||
|
||||
# TODO: iterate over (idx=>val) pairs combining vals
|
||||
function Base.iterate(itr::NZPairsIter, state::Tuple{Int,Int}=(1, 1))
|
||||
function Base.iterate(itr::NZPairsIter, state::Tuple{Int,Int} = (1, 1))
|
||||
k = iterate(itr.m.pos, state[1])
|
||||
isnothing(k) && return iterate(itr, state[2])
|
||||
idx, st = k
|
||||
|
@ -1,7 +1,8 @@
|
||||
## something about roots
|
||||
|
||||
Roots.Root(e::MatrixGroups.ElementaryMatrix{N}) where {N} =
|
||||
Roots.𝕖(N, e.i) - Roots.𝕖(N, e.j)
|
||||
function Roots.Root(e::MatrixGroups.ElementaryMatrix{N}) where {N}
|
||||
return Roots.𝕖(N, e.i) - Roots.𝕖(N, e.j)
|
||||
end
|
||||
|
||||
function Roots.Root(s::MatrixGroups.ElementarySymplectic{N}) where {N}
|
||||
if s.symbol === :A
|
||||
@ -51,20 +52,28 @@ function Adj(rootsystem::AbstractDict, subtype::Symbol)
|
||||
+,
|
||||
(
|
||||
Δα * Δβ for (α, Δα) in rootsystem for (β, Δβ) in rootsystem if
|
||||
Roots.classify_sub_root_system(
|
||||
roots,
|
||||
first(α),
|
||||
first(β),
|
||||
) == subtype
|
||||
),
|
||||
init=zero(first(values(rootsystem))),
|
||||
Roots.classify_sub_root_system(roots, first(α), first(β)) == subtype
|
||||
);
|
||||
init = zero(first(values(rootsystem))),
|
||||
)
|
||||
end
|
||||
|
||||
Adj(rootsystem::AbstractDict) = sum(values(rootsystem))^2 - Sq(rootsystem)
|
||||
|
||||
function Sq(rootsystem::AbstractDict)
|
||||
return reduce(
|
||||
+,
|
||||
Δα^2 for (_, Δα) in rootsystem;
|
||||
init = zero(first(values(rootsystem))),
|
||||
)
|
||||
end
|
||||
|
||||
function level(rootsystem, level::Integer)
|
||||
1 ≤ level ≤ 4 || throw("level is implemented only for i ∈{1,2,3,4}")
|
||||
level == 1 && return Adj(rootsystem, :C₁) # always positive
|
||||
level == 2 && return Adj(rootsystem, :A₁) + Adj(rootsystem, Symbol("C₁×C₁")) + Adj(rootsystem, :C₂) # C₂ is not positive
|
||||
level == 2 && return Adj(rootsystem, :A₁) +
|
||||
Adj(rootsystem, Symbol("C₁×C₁")) +
|
||||
Adj(rootsystem, :C₂) # C₂ is not positive
|
||||
level == 3 && return Adj(rootsystem, :A₂) + Adj(rootsystem, Symbol("A₁×C₁"))
|
||||
level == 4 && return Adj(rootsystem, Symbol("A₁×A₁")) # positive
|
||||
end
|
||||
|
@ -7,35 +7,31 @@ end
|
||||
|
||||
function reconstruct(
|
||||
Ms::AbstractVector{<:AbstractMatrix},
|
||||
wbdec::WedderburnDecomposition;
|
||||
atol=eps(real(eltype(wbdec))) * 10__outer_dim(wbdec)
|
||||
wbdec::WedderburnDecomposition,
|
||||
)
|
||||
n = __outer_dim(wbdec)
|
||||
res = sum(zip(Ms, SymbolicWedderburn.direct_summands(wbdec))) do (M, ds)
|
||||
res = similar(M, n, n)
|
||||
reconstruct!(res, M, ds, __group_of(wbdec), wbdec.hom, atol=atol)
|
||||
res = _reconstruct!(res, M, ds, __group_of(wbdec), wbdec.hom)
|
||||
return res
|
||||
end
|
||||
return res
|
||||
end
|
||||
|
||||
function reconstruct!(
|
||||
function _reconstruct!(
|
||||
res::AbstractMatrix,
|
||||
M::AbstractMatrix,
|
||||
ds::SymbolicWedderburn.DirectSummand,
|
||||
G,
|
||||
hom;
|
||||
atol=eps(real(eltype(ds))) * 10max(size(res)...)
|
||||
hom,
|
||||
)
|
||||
res .= zero(eltype(res))
|
||||
U = SymbolicWedderburn.image_basis(ds)
|
||||
d = SymbolicWedderburn.degree(ds)
|
||||
tmp = (U' * M * U) .* d
|
||||
Θπ = (U' * M * U) .* d
|
||||
|
||||
res = average!(res, tmp, G, hom)
|
||||
if eltype(res) <: AbstractFloat
|
||||
__droptol!(res, atol) # TODO: is this really necessary?!
|
||||
end
|
||||
return res
|
||||
res .= zero(eltype(res))
|
||||
Θπ = average!(res, Θπ, G, hom)
|
||||
return Θπ
|
||||
end
|
||||
|
||||
function __droptol!(M::AbstractMatrix, tol)
|
||||
@ -52,14 +48,18 @@ function average!(
|
||||
res::AbstractMatrix,
|
||||
M::AbstractMatrix,
|
||||
G::Groups.Group,
|
||||
hom::SymbolicWedderburn.InducedActionHomomorphism{<:SymbolicWedderburn.ByPermutations}
|
||||
hom::SymbolicWedderburn.InducedActionHomomorphism{
|
||||
<:SymbolicWedderburn.ByPermutations,
|
||||
},
|
||||
)
|
||||
@assert size(M) == size(res)
|
||||
for g in G
|
||||
gext = SymbolicWedderburn.induce(hom, g)
|
||||
p = SymbolicWedderburn.induce(hom, g)
|
||||
Threads.@threads for c in axes(res, 2)
|
||||
# note: p is a permutation,
|
||||
# so accesses below are guaranteed to be disjoint
|
||||
for r in axes(res, 1)
|
||||
res[r, c] += M[r^gext, c^gext]
|
||||
res[r^p, c^p] += M[r, c]
|
||||
end
|
||||
end
|
||||
end
|
||||
|
18
src/roots.jl
18
src/roots.jl
@ -30,7 +30,7 @@ Base.:*(r::Root, a::Number) = a * r
|
||||
|
||||
Base.length(r::AbstractRoot) = norm(r, 2)
|
||||
|
||||
LinearAlgebra.norm(r::Root, p::Real=2) = norm(r.coord, p)
|
||||
LinearAlgebra.norm(r::Root, p::Real = 2) = norm(r.coord, p)
|
||||
LinearAlgebra.dot(r::Root, s::Root) = dot(r.coord, s.coord)
|
||||
|
||||
cos_angle(a, b) = dot(a, b) / (norm(a) * norm(b))
|
||||
@ -38,13 +38,13 @@ cos_angle(a, b) = dot(a, b) / (norm(a) * norm(b))
|
||||
function isproportional(α::AbstractRoot{N}, β::AbstractRoot{M}) where {N,M}
|
||||
N == M || return false
|
||||
val = abs(cos_angle(α, β))
|
||||
return isapprox(val, one(val), atol=eps(one(val)))
|
||||
return isapprox(val, one(val); atol = eps(one(val)))
|
||||
end
|
||||
|
||||
function isorthogonal(α::AbstractRoot{N}, β::AbstractRoot{M}) where {N,M}
|
||||
N == M || return false
|
||||
val = cos_angle(α, β)
|
||||
return isapprox(val, zero(val), atol=eps(one(val)))
|
||||
return isapprox(val, zero(val); atol = eps(one(val)))
|
||||
end
|
||||
|
||||
function _positive_direction(α::Root{N}) where {N}
|
||||
@ -53,19 +53,18 @@ function _positive_direction(α::Root{N}) where {N}
|
||||
end
|
||||
|
||||
function positive(roots::AbstractVector{<:Root{N}}) where {N}
|
||||
# return those roots for which dot(α, Root([½, ¼, …])) > 0.0
|
||||
pd = _positive_direction(first(roots))
|
||||
return filter(α -> dot(α, pd) > 0.0, roots)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, r::Root)
|
||||
print(io, "Root$(r.coord)")
|
||||
return print(io, "Root$(r.coord)")
|
||||
end
|
||||
|
||||
function Base.show(io::IO, ::MIME"text/plain", r::Root{N}) where {N}
|
||||
lngth² = sum(x -> x^2, r.coord)
|
||||
l = isinteger(sqrt(lngth²)) ? "$(sqrt(lngth²))" : "√$(lngth²)"
|
||||
print(io, "Root in ℝ^$N of length $l\n", r.coord)
|
||||
return print(io, "Root in ℝ^$N of length $l\n", r.coord)
|
||||
end
|
||||
|
||||
𝕖(N, i) = Root(ntuple(k -> k == i ? 1 : 0, N))
|
||||
@ -139,10 +138,11 @@ struct Plane{R<:Root}
|
||||
vectors::Vector{R}
|
||||
end
|
||||
|
||||
Plane(α::R, β::R) where {R<:Root} =
|
||||
Plane(α, β, [a * α + b * β for a in -3:3 for b in -3:3])
|
||||
function Plane(α::Root, β::Root)
|
||||
return Plane(α, β, [a * α + b * β for a in -3:3 for b in -3:3])
|
||||
end
|
||||
|
||||
function Base.in(r::R, plane::Plane{R}) where {R}
|
||||
function Base.in(r::Root, plane::Plane)
|
||||
return any(isproportional(r, v) for v in plane.vectors)
|
||||
end
|
||||
|
||||
|
23
src/solve.jl
23
src/solve.jl
@ -7,12 +7,15 @@ function setwarmstart!(model::JuMP.Model, warmstart)
|
||||
ct => JuMP.all_constraints(model, ct...) for
|
||||
ct in JuMP.list_of_constraint_types(model)
|
||||
)
|
||||
try
|
||||
JuMP.set_start_value.(JuMP.all_variables(model), warmstart.primal)
|
||||
|
||||
JuMP.set_start_value.(JuMP.all_variables(model), warmstart.primal)
|
||||
|
||||
for (ct, idx) in pairs(constraint_map)
|
||||
JuMP.set_start_value.(idx, warmstart.slack[ct])
|
||||
JuMP.set_dual_start_value.(idx, warmstart.dual[ct])
|
||||
for (ct, idx) in pairs(constraint_map)
|
||||
JuMP.set_start_value.(idx, warmstart.slack[ct])
|
||||
JuMP.set_dual_start_value.(idx, warmstart.dual[ct])
|
||||
end
|
||||
catch e
|
||||
@warn "Warmstarting was not succesfull!" e
|
||||
end
|
||||
return model
|
||||
end
|
||||
@ -28,11 +31,10 @@ function getwarmstart(model::JuMP.Model)
|
||||
slack = Dict(k => value.(v) for (k, v) in constraint_map)
|
||||
duals = Dict(k => JuMP.dual.(v) for (k, v) in constraint_map)
|
||||
|
||||
return (primal=primal, dual=duals, slack=slack)
|
||||
return (primal = primal, dual = duals, slack = slack)
|
||||
end
|
||||
|
||||
function solve(m::JuMP.Model, optimizer, warmstart=nothing)
|
||||
|
||||
function solve(m::JuMP.Model, optimizer, warmstart = nothing)
|
||||
JuMP.set_optimizer(m, optimizer)
|
||||
MOIU.attach_optimizer(m)
|
||||
|
||||
@ -45,8 +47,7 @@ function solve(m::JuMP.Model, optimizer, warmstart=nothing)
|
||||
return status, getwarmstart(m)
|
||||
end
|
||||
|
||||
function solve(solverlog::String, m::JuMP.Model, optimizer, warmstart=nothing)
|
||||
|
||||
function solve(solverlog::String, m::JuMP.Model, optimizer, warmstart = nothing)
|
||||
isdir(dirname(solverlog)) || mkpath(dirname(solverlog))
|
||||
|
||||
Base.flush(Base.stdout)
|
||||
@ -55,7 +56,7 @@ function solve(solverlog::String, m::JuMP.Model, optimizer, warmstart=nothing)
|
||||
redirect_stdout(logfile) do
|
||||
status, warmstart = solve(m, optimizer, warmstart)
|
||||
Base.Libc.flush_cstdio()
|
||||
status, warmstart
|
||||
return status, warmstart
|
||||
end
|
||||
end
|
||||
|
||||
|
@ -6,8 +6,8 @@ See also [sos_problem_primal](@ref).
|
||||
"""
|
||||
function sos_problem_dual(
|
||||
elt::StarAlgebras.AlgebraElement,
|
||||
order_unit::StarAlgebras.AlgebraElement=zero(elt);
|
||||
lower_bound=-Inf
|
||||
order_unit::StarAlgebras.AlgebraElement = zero(elt);
|
||||
lower_bound = -Inf,
|
||||
)
|
||||
@assert parent(elt) == parent(order_unit)
|
||||
algebra = parent(elt)
|
||||
@ -55,9 +55,10 @@ The default `u = zero(X)` formulates a simple feasibility problem.
|
||||
"""
|
||||
function sos_problem_primal(
|
||||
elt::StarAlgebras.AlgebraElement,
|
||||
order_unit::StarAlgebras.AlgebraElement=zero(elt);
|
||||
upper_bound=Inf,
|
||||
augmented::Bool=iszero(StarAlgebras.aug(elt)) && iszero(StarAlgebras.aug(order_unit))
|
||||
order_unit::StarAlgebras.AlgebraElement = zero(elt);
|
||||
upper_bound = Inf,
|
||||
augmented::Bool = iszero(StarAlgebras.aug(elt)) &&
|
||||
iszero(StarAlgebras.aug(order_unit)),
|
||||
)
|
||||
@assert parent(elt) === parent(order_unit)
|
||||
|
||||
@ -113,11 +114,13 @@ function isorth_projection(ds::SymbolicWedderburn.DirectSummand)
|
||||
return isapprox(U * U', I)
|
||||
end
|
||||
|
||||
sos_problem_primal(
|
||||
function sos_problem_primal(
|
||||
elt::StarAlgebras.AlgebraElement,
|
||||
wedderburn::WedderburnDecomposition;
|
||||
kwargs...
|
||||
) = sos_problem_primal(elt, zero(elt), wedderburn; kwargs...)
|
||||
kwargs...,
|
||||
)
|
||||
return sos_problem_primal(elt, zero(elt), wedderburn; kwargs...)
|
||||
end
|
||||
|
||||
function __fast_recursive_dot!(
|
||||
res::JuMP.AffExpr,
|
||||
@ -157,16 +160,18 @@ function sos_problem_primal(
|
||||
elt::StarAlgebras.AlgebraElement,
|
||||
orderunit::StarAlgebras.AlgebraElement,
|
||||
wedderburn::WedderburnDecomposition;
|
||||
upper_bound=Inf,
|
||||
augmented=iszero(StarAlgebras.aug(elt)) && iszero(StarAlgebras.aug(orderunit)),
|
||||
check_orthogonality=true,
|
||||
show_progress=false
|
||||
upper_bound = Inf,
|
||||
augmented = iszero(StarAlgebras.aug(elt)) &&
|
||||
iszero(StarAlgebras.aug(orderunit)),
|
||||
check_orthogonality = true,
|
||||
show_progress = false,
|
||||
)
|
||||
|
||||
@assert parent(elt) === parent(orderunit)
|
||||
if check_orthogonality
|
||||
if any(!isorth_projection, direct_summands(wedderburn))
|
||||
error("Wedderburn decomposition contains a non-orthogonal projection")
|
||||
error(
|
||||
"Wedderburn decomposition contains a non-orthogonal projection",
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@ -189,7 +194,7 @@ function sos_problem_primal(
|
||||
dim = size(ds, 1)
|
||||
P = JuMP.@variable(model, [1:dim, 1:dim], Symmetric)
|
||||
JuMP.@constraint(model, P in PSDCone())
|
||||
P
|
||||
return P
|
||||
end
|
||||
|
||||
begin # preallocating
|
||||
@ -205,16 +210,16 @@ function sos_problem_primal(
|
||||
cnstrs = constraints(parent(elt); augmented = augmented)
|
||||
|
||||
prog = ProgressMeter.Progress(
|
||||
length(invariant_vectors(wedderburn)),
|
||||
dt=1,
|
||||
desc="Adding constraints... ",
|
||||
enabled=show_progress,
|
||||
barlen=60,
|
||||
showspeed=true
|
||||
length(invariant_vectors(wedderburn));
|
||||
dt = 1,
|
||||
desc = "Adding constraints: ",
|
||||
enabled = show_progress,
|
||||
barlen = 60,
|
||||
showspeed = true,
|
||||
)
|
||||
|
||||
for (i, iv) in enumerate(invariant_vectors(wedderburn))
|
||||
ProgressMeter.next!(prog, showvalues=__show_itrs(i, prog.n))
|
||||
ProgressMeter.next!(prog; showvalues = __show_itrs(i, prog.n))
|
||||
|
||||
x = dot(X, iv)
|
||||
u = dot(U, iv)
|
||||
|
@ -4,12 +4,12 @@ import JuMP
|
||||
import SCS
|
||||
|
||||
function scs_optimizer(;
|
||||
accel=10,
|
||||
alpha=1.5,
|
||||
eps=1e-9,
|
||||
max_iters=100_000,
|
||||
verbose=true,
|
||||
linear_solver=SCS.DirectSolver
|
||||
accel = 10,
|
||||
alpha = 1.5,
|
||||
eps = 1e-9,
|
||||
max_iters = 100_000,
|
||||
verbose = true,
|
||||
linear_solver = SCS.DirectSolver,
|
||||
)
|
||||
return JuMP.optimizer_with_attributes(
|
||||
SCS.Optimizer,
|
||||
@ -28,20 +28,18 @@ end
|
||||
import COSMO
|
||||
|
||||
function cosmo_optimizer(;
|
||||
accel=15,
|
||||
alpha=1.6,
|
||||
eps=1e-9,
|
||||
max_iters=100_000,
|
||||
verbose=true,
|
||||
verbose_timing=verbose,
|
||||
decompose=false
|
||||
accel = 15,
|
||||
alpha = 1.6,
|
||||
eps = 1e-9,
|
||||
max_iters = 100_000,
|
||||
verbose = true,
|
||||
verbose_timing = verbose,
|
||||
decompose = false,
|
||||
)
|
||||
return JuMP.optimizer_with_attributes(
|
||||
COSMO.Optimizer,
|
||||
"accelerator" => COSMO.with_options(
|
||||
COSMO.AndersonAccelerator,
|
||||
mem=max(accel, 2)
|
||||
),
|
||||
"accelerator" =>
|
||||
COSMO.with_options(COSMO.AndersonAccelerator; mem = max(accel, 2)),
|
||||
"alpha" => alpha,
|
||||
"decompose" => decompose,
|
||||
"eps_abs" => eps,
|
||||
@ -49,6 +47,6 @@ function cosmo_optimizer(;
|
||||
"max_iter" => max_iters,
|
||||
"verbose" => verbose,
|
||||
"verbose_timing" => verbose_timing,
|
||||
"check_termination" => 200,
|
||||
"check_termination" => 250,
|
||||
)
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user