1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-19 07:20:28 +01:00

lots of re-formatting

This commit is contained in:
Marek Kaluba 2023-03-19 20:33:28 +01:00
parent a1de0ecc85
commit a5f5a4ea35
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
11 changed files with 150 additions and 110 deletions

9
.JuliaFormatter.toml Normal file
View File

@ -0,0 +1,9 @@
# Configuration file for JuliaFormatter.jl
# For more information, see: https://domluna.github.io/JuliaFormatter.jl/stable/config/
always_for_in = true
always_use_return = true
margin = 80
remove_extra_newlines = true
separate_kwargs_with_semicolon = true
short_to_long_function_def = true

View File

@ -29,14 +29,14 @@ include("actions/actions.jl")
function group_algebra(G::Groups.Group, S = gens(G); halfradius::Integer)
S = union!(S, inv.(S))
@info "generating wl-metric ball of radius $(2halfradius)"
@time E, sizes = Groups.wlmetric_ball(S, radius=2halfradius)
@time E, sizes = Groups.wlmetric_ball(S; radius = 2halfradius)
@info "sizes = $(sizes)"
@info "computing the *-algebra structure for G"
@time RG = StarAlgebras.StarAlgebra(
G,
StarAlgebras.Basis{UInt32}(E),
(sizes[halfradius], sizes[halfradius]),
precompute=false,
(sizes[halfradius], sizes[halfradius]);
precompute = false,
)
return RG, S, sizes
end

View File

@ -1,5 +1,4 @@
import SymbolicWedderburn.action
StarAlgebras.star(g::Groups.GroupElement) = inv(g)
include("alphabet_permutation.jl")
@ -10,7 +9,7 @@ include("autfn_conjugation.jl")
function SymbolicWedderburn.action(
act::SymbolicWedderburn.ByPermutations,
g::Groups.GroupElement,
α::StarAlgebras.AlgebraElement
α::StarAlgebras.AlgebraElement,
)
res = StarAlgebras.zero!(similar(α))
B = basis(parent(α))

View File

@ -35,7 +35,11 @@ function __sos_via_sqr!(
return res
end
function __sos_via_cnstr!(res::StarAlgebras.AlgebraElement, ::AbstractMatrix, cnstrs)
function __sos_via_cnstr!(
res::StarAlgebras.AlgebraElement,
::AbstractMatrix,
cnstrs,
)
StarAlgebras.zero!(res)
for (g, A_g) in cnstrs
res[g] = dot(A_g, )
@ -43,10 +47,14 @@ function __sos_via_cnstr!(res::StarAlgebras.AlgebraElement, Q²::AbstractMatrix,
return res
end
function compute_sos(A::StarAlgebras.StarAlgebra, Q::AbstractMatrix; augmented::Bool)
function compute_sos(
A::StarAlgebras.StarAlgebra,
Q::AbstractMatrix;
augmented::Bool,
)
= Q' * Q
res = StarAlgebras.AlgebraElement(zeros(eltype(), length(basis(A))), A)
res = __sos_via_sqr!(res, , augmented=augmented)
res = __sos_via_sqr!(res, ; augmented = augmented)
return res
end
@ -80,13 +88,12 @@ function sufficient_λ(
order_unit::StarAlgebras.AlgebraElement,
λ,
sos::StarAlgebras.AlgebraElement;
halfradius
halfradius,
)
@assert parent(elt) === parent(order_unit) == parent(sos)
residual = (elt - λ * order_unit) - sos
return sufficient_λ(residual, λ; halfradius=halfradius)
return sufficient_λ(residual, λ; halfradius = halfradius)
end
function certify_solution(
@ -95,17 +102,18 @@ function certify_solution(
λ,
Q::AbstractMatrix{<:AbstractFloat};
halfradius,
augmented=iszero(StarAlgebras.aug(elt)) && iszero(StarAlgebras.aug(orderunit))
augmented = iszero(StarAlgebras.aug(elt)) &&
iszero(StarAlgebras.aug(orderunit)),
)
should_we_augment = !augmented && StarAlgebras.aug(elt) == StarAlgebras.aug(orderunit) == 0
should_we_augment =
!augmented && StarAlgebras.aug(elt) == StarAlgebras.aug(orderunit) == 0
Q = should_we_augment ? augment_columns!(Q) : Q
@time sos = compute_sos(parent(elt), Q, augmented=augmented)
@time sos = compute_sos(parent(elt), Q; augmented = augmented)
@info "Checking in $(eltype(sos)) arithmetic with" λ
λ_flpoint = sufficient_λ(elt, orderunit, λ, sos, halfradius=halfradius)
λ_flpoint = sufficient_λ(elt, orderunit, λ, sos; halfradius = halfradius)
if λ_flpoint 0
return false, λ_flpoint
@ -122,16 +130,16 @@ function certify_solution(
check_augmented || @error(
"Augmentation failed! The following numbers are not certified!"
)
sos_int = compute_sos(parent(elt), Q_int; augmented=augmented)
sos_int = compute_sos(parent(elt), Q_int; augmented = augmented)
check_augmented, sos_int
else
true, compute_sos(parent(elt), Q_int, augmented=augmented)
true, compute_sos(parent(elt), Q_int; augmented = augmented)
end
@info "Checking in $(eltype(sos_int)) arithmetic with" λ_int
λ_certified =
sufficient_λ(elt, orderunit, λ_int, sos_int, halfradius=halfradius)
sufficient_λ(elt, orderunit, λ_int, sos_int; halfradius = halfradius)
return check && inf(λ_certified) > 0.0, inf(λ_certified)
return check && inf(λ_certified) > 0.0, λ_certified
end

View File

@ -28,7 +28,12 @@ struct ConstraintMatrix{T,I} <: AbstractMatrix{T}
size::Tuple{Int,Int}
val::T
function ConstraintMatrix{T}(nzeros::AbstractArray{<:Integer}, n, m, val) where {T}
function ConstraintMatrix{T}(
nzeros::AbstractArray{<:Integer},
n,
m,
val,
) where {T}
@assert n 1
@assert m 1
@ -45,8 +50,14 @@ struct ConstraintMatrix{T,I} <: AbstractMatrix{T}
end
end
ConstraintMatrix(nzeros::AbstractArray{<:Integer}, n, m, val::T) where {T} =
ConstraintMatrix{T}(nzeros, n, m, val)
function ConstraintMatrix(
nzeros::AbstractArray{<:Integer},
n,
m,
val::T,
) where {T}
return ConstraintMatrix{T}(nzeros, n, m, val)
end
Base.size(cm::ConstraintMatrix) = cm.size
@ -80,7 +91,7 @@ Base.eltype(::Type{NZPairsIter{T}}) where {T} = Pair{Int,T}
Base.IteratorSize(::Type{<:NZPairsIter}) = Base.SizeUnknown()
# TODO: iterate over (idx=>val) pairs combining vals
function Base.iterate(itr::NZPairsIter, state::Tuple{Int,Int}=(1, 1))
function Base.iterate(itr::NZPairsIter, state::Tuple{Int,Int} = (1, 1))
k = iterate(itr.m.pos, state[1])
isnothing(k) && return iterate(itr, state[2])
idx, st = k

View File

@ -1,7 +1,8 @@
## something about roots
Roots.Root(e::MatrixGroups.ElementaryMatrix{N}) where {N} =
Roots.𝕖(N, e.i) - Roots.𝕖(N, e.j)
function Roots.Root(e::MatrixGroups.ElementaryMatrix{N}) where {N}
return Roots.𝕖(N, e.i) - Roots.𝕖(N, e.j)
end
function Roots.Root(s::MatrixGroups.ElementarySymplectic{N}) where {N}
if s.symbol === :A
@ -51,20 +52,28 @@ function Adj(rootsystem::AbstractDict, subtype::Symbol)
+,
(
Δα * Δβ for (α, Δα) in rootsystem for (β, Δβ) in rootsystem if
Roots.classify_sub_root_system(
roots,
first(α),
first(β),
) == subtype
),
init=zero(first(values(rootsystem))),
Roots.classify_sub_root_system(roots, first(α), first(β)) == subtype
);
init = zero(first(values(rootsystem))),
)
end
Adj(rootsystem::AbstractDict) = sum(values(rootsystem))^2 - Sq(rootsystem)
function Sq(rootsystem::AbstractDict)
return reduce(
+,
Δα^2 for (_, Δα) in rootsystem;
init = zero(first(values(rootsystem))),
)
end
function level(rootsystem, level::Integer)
1 level 4 || throw("level is implemented only for i ∈{1,2,3,4}")
level == 1 && return Adj(rootsystem, :C₁) # always positive
level == 2 && return Adj(rootsystem, :A₁) + Adj(rootsystem, Symbol("C₁×C₁")) + Adj(rootsystem, :C₂) # C₂ is not positive
level == 2 && return Adj(rootsystem, :A₁) +
Adj(rootsystem, Symbol("C₁×C₁")) +
Adj(rootsystem, :C₂) # C₂ is not positive
level == 3 && return Adj(rootsystem, :A₂) + Adj(rootsystem, Symbol("A₁×C₁"))
level == 4 && return Adj(rootsystem, Symbol("A₁×A₁")) # positive
end

View File

@ -7,35 +7,31 @@ end
function reconstruct(
Ms::AbstractVector{<:AbstractMatrix},
wbdec::WedderburnDecomposition;
atol=eps(real(eltype(wbdec))) * 10__outer_dim(wbdec)
wbdec::WedderburnDecomposition,
)
n = __outer_dim(wbdec)
res = sum(zip(Ms, SymbolicWedderburn.direct_summands(wbdec))) do (M, ds)
res = similar(M, n, n)
reconstruct!(res, M, ds, __group_of(wbdec), wbdec.hom, atol=atol)
res = _reconstruct!(res, M, ds, __group_of(wbdec), wbdec.hom)
return res
end
return res
end
function reconstruct!(
function _reconstruct!(
res::AbstractMatrix,
M::AbstractMatrix,
ds::SymbolicWedderburn.DirectSummand,
G,
hom;
atol=eps(real(eltype(ds))) * 10max(size(res)...)
hom,
)
res .= zero(eltype(res))
U = SymbolicWedderburn.image_basis(ds)
d = SymbolicWedderburn.degree(ds)
tmp = (U' * M * U) .* d
Θπ = (U' * M * U) .* d
res = average!(res, tmp, G, hom)
if eltype(res) <: AbstractFloat
__droptol!(res, atol) # TODO: is this really necessary?!
end
return res
res .= zero(eltype(res))
Θπ = average!(res, Θπ, G, hom)
return Θπ
end
function __droptol!(M::AbstractMatrix, tol)
@ -52,14 +48,18 @@ function average!(
res::AbstractMatrix,
M::AbstractMatrix,
G::Groups.Group,
hom::SymbolicWedderburn.InducedActionHomomorphism{<:SymbolicWedderburn.ByPermutations}
hom::SymbolicWedderburn.InducedActionHomomorphism{
<:SymbolicWedderburn.ByPermutations,
},
)
@assert size(M) == size(res)
for g in G
gext = SymbolicWedderburn.induce(hom, g)
p = SymbolicWedderburn.induce(hom, g)
Threads.@threads for c in axes(res, 2)
# note: p is a permutation,
# so accesses below are guaranteed to be disjoint
for r in axes(res, 1)
res[r, c] += M[r^gext, c^gext]
res[r^p, c^p] += M[r, c]
end
end
end

View File

@ -30,7 +30,7 @@ Base.:*(r::Root, a::Number) = a * r
Base.length(r::AbstractRoot) = norm(r, 2)
LinearAlgebra.norm(r::Root, p::Real=2) = norm(r.coord, p)
LinearAlgebra.norm(r::Root, p::Real = 2) = norm(r.coord, p)
LinearAlgebra.dot(r::Root, s::Root) = dot(r.coord, s.coord)
cos_angle(a, b) = dot(a, b) / (norm(a) * norm(b))
@ -38,13 +38,13 @@ cos_angle(a, b) = dot(a, b) / (norm(a) * norm(b))
function isproportional(α::AbstractRoot{N}, β::AbstractRoot{M}) where {N,M}
N == M || return false
val = abs(cos_angle(α, β))
return isapprox(val, one(val), atol=eps(one(val)))
return isapprox(val, one(val); atol = eps(one(val)))
end
function isorthogonal(α::AbstractRoot{N}, β::AbstractRoot{M}) where {N,M}
N == M || return false
val = cos_angle(α, β)
return isapprox(val, zero(val), atol=eps(one(val)))
return isapprox(val, zero(val); atol = eps(one(val)))
end
function _positive_direction(α::Root{N}) where {N}
@ -53,19 +53,18 @@ function _positive_direction(α::Root{N}) where {N}
end
function positive(roots::AbstractVector{<:Root{N}}) where {N}
# return those roots for which dot(α, Root([½, ¼, …])) > 0.0
pd = _positive_direction(first(roots))
return filter(α -> dot(α, pd) > 0.0, roots)
end
function Base.show(io::IO, r::Root)
print(io, "Root$(r.coord)")
return print(io, "Root$(r.coord)")
end
function Base.show(io::IO, ::MIME"text/plain", r::Root{N}) where {N}
lngth² = sum(x -> x^2, r.coord)
l = isinteger(sqrt(lngth²)) ? "$(sqrt(lngth²))" : "$(lngth²)"
print(io, "Root in ^$N of length $l\n", r.coord)
return print(io, "Root in ^$N of length $l\n", r.coord)
end
𝕖(N, i) = Root(ntuple(k -> k == i ? 1 : 0, N))
@ -139,10 +138,11 @@ struct Plane{R<:Root}
vectors::Vector{R}
end
Plane(α::R, β::R) where {R<:Root} =
Plane(α, β, [a * α + b * β for a in -3:3 for b in -3:3])
function Plane(α::Root, β::Root)
return Plane(α, β, [a * α + b * β for a in -3:3 for b in -3:3])
end
function Base.in(r::R, plane::Plane{R}) where {R}
function Base.in(r::Root, plane::Plane)
return any(isproportional(r, v) for v in plane.vectors)
end

View File

@ -7,12 +7,15 @@ function setwarmstart!(model::JuMP.Model, warmstart)
ct => JuMP.all_constraints(model, ct...) for
ct in JuMP.list_of_constraint_types(model)
)
try
JuMP.set_start_value.(JuMP.all_variables(model), warmstart.primal)
JuMP.set_start_value.(JuMP.all_variables(model), warmstart.primal)
for (ct, idx) in pairs(constraint_map)
JuMP.set_start_value.(idx, warmstart.slack[ct])
JuMP.set_dual_start_value.(idx, warmstart.dual[ct])
for (ct, idx) in pairs(constraint_map)
JuMP.set_start_value.(idx, warmstart.slack[ct])
JuMP.set_dual_start_value.(idx, warmstart.dual[ct])
end
catch e
@warn "Warmstarting was not succesfull!" e
end
return model
end
@ -28,11 +31,10 @@ function getwarmstart(model::JuMP.Model)
slack = Dict(k => value.(v) for (k, v) in constraint_map)
duals = Dict(k => JuMP.dual.(v) for (k, v) in constraint_map)
return (primal=primal, dual=duals, slack=slack)
return (primal = primal, dual = duals, slack = slack)
end
function solve(m::JuMP.Model, optimizer, warmstart=nothing)
function solve(m::JuMP.Model, optimizer, warmstart = nothing)
JuMP.set_optimizer(m, optimizer)
MOIU.attach_optimizer(m)
@ -45,8 +47,7 @@ function solve(m::JuMP.Model, optimizer, warmstart=nothing)
return status, getwarmstart(m)
end
function solve(solverlog::String, m::JuMP.Model, optimizer, warmstart=nothing)
function solve(solverlog::String, m::JuMP.Model, optimizer, warmstart = nothing)
isdir(dirname(solverlog)) || mkpath(dirname(solverlog))
Base.flush(Base.stdout)
@ -55,7 +56,7 @@ function solve(solverlog::String, m::JuMP.Model, optimizer, warmstart=nothing)
redirect_stdout(logfile) do
status, warmstart = solve(m, optimizer, warmstart)
Base.Libc.flush_cstdio()
status, warmstart
return status, warmstart
end
end

View File

@ -6,8 +6,8 @@ See also [sos_problem_primal](@ref).
"""
function sos_problem_dual(
elt::StarAlgebras.AlgebraElement,
order_unit::StarAlgebras.AlgebraElement=zero(elt);
lower_bound=-Inf
order_unit::StarAlgebras.AlgebraElement = zero(elt);
lower_bound = -Inf,
)
@assert parent(elt) == parent(order_unit)
algebra = parent(elt)
@ -55,9 +55,10 @@ The default `u = zero(X)` formulates a simple feasibility problem.
"""
function sos_problem_primal(
elt::StarAlgebras.AlgebraElement,
order_unit::StarAlgebras.AlgebraElement=zero(elt);
upper_bound=Inf,
augmented::Bool=iszero(StarAlgebras.aug(elt)) && iszero(StarAlgebras.aug(order_unit))
order_unit::StarAlgebras.AlgebraElement = zero(elt);
upper_bound = Inf,
augmented::Bool = iszero(StarAlgebras.aug(elt)) &&
iszero(StarAlgebras.aug(order_unit)),
)
@assert parent(elt) === parent(order_unit)
@ -113,11 +114,13 @@ function isorth_projection(ds::SymbolicWedderburn.DirectSummand)
return isapprox(U * U', I)
end
sos_problem_primal(
function sos_problem_primal(
elt::StarAlgebras.AlgebraElement,
wedderburn::WedderburnDecomposition;
kwargs...
) = sos_problem_primal(elt, zero(elt), wedderburn; kwargs...)
kwargs...,
)
return sos_problem_primal(elt, zero(elt), wedderburn; kwargs...)
end
function __fast_recursive_dot!(
res::JuMP.AffExpr,
@ -157,16 +160,18 @@ function sos_problem_primal(
elt::StarAlgebras.AlgebraElement,
orderunit::StarAlgebras.AlgebraElement,
wedderburn::WedderburnDecomposition;
upper_bound=Inf,
augmented=iszero(StarAlgebras.aug(elt)) && iszero(StarAlgebras.aug(orderunit)),
check_orthogonality=true,
show_progress=false
upper_bound = Inf,
augmented = iszero(StarAlgebras.aug(elt)) &&
iszero(StarAlgebras.aug(orderunit)),
check_orthogonality = true,
show_progress = false,
)
@assert parent(elt) === parent(orderunit)
if check_orthogonality
if any(!isorth_projection, direct_summands(wedderburn))
error("Wedderburn decomposition contains a non-orthogonal projection")
error(
"Wedderburn decomposition contains a non-orthogonal projection",
)
end
end
@ -189,7 +194,7 @@ function sos_problem_primal(
dim = size(ds, 1)
P = JuMP.@variable(model, [1:dim, 1:dim], Symmetric)
JuMP.@constraint(model, P in PSDCone())
P
return P
end
begin # preallocating
@ -205,16 +210,16 @@ function sos_problem_primal(
cnstrs = constraints(parent(elt); augmented = augmented)
prog = ProgressMeter.Progress(
length(invariant_vectors(wedderburn)),
dt=1,
desc="Adding constraints... ",
enabled=show_progress,
barlen=60,
showspeed=true
length(invariant_vectors(wedderburn));
dt = 1,
desc = "Adding constraints: ",
enabled = show_progress,
barlen = 60,
showspeed = true,
)
for (i, iv) in enumerate(invariant_vectors(wedderburn))
ProgressMeter.next!(prog, showvalues=__show_itrs(i, prog.n))
ProgressMeter.next!(prog; showvalues = __show_itrs(i, prog.n))
x = dot(X, iv)
u = dot(U, iv)

View File

@ -4,12 +4,12 @@ import JuMP
import SCS
function scs_optimizer(;
accel=10,
alpha=1.5,
eps=1e-9,
max_iters=100_000,
verbose=true,
linear_solver=SCS.DirectSolver
accel = 10,
alpha = 1.5,
eps = 1e-9,
max_iters = 100_000,
verbose = true,
linear_solver = SCS.DirectSolver,
)
return JuMP.optimizer_with_attributes(
SCS.Optimizer,
@ -28,20 +28,18 @@ end
import COSMO
function cosmo_optimizer(;
accel=15,
alpha=1.6,
eps=1e-9,
max_iters=100_000,
verbose=true,
verbose_timing=verbose,
decompose=false
accel = 15,
alpha = 1.6,
eps = 1e-9,
max_iters = 100_000,
verbose = true,
verbose_timing = verbose,
decompose = false,
)
return JuMP.optimizer_with_attributes(
COSMO.Optimizer,
"accelerator" => COSMO.with_options(
COSMO.AndersonAccelerator,
mem=max(accel, 2)
),
"accelerator" =>
COSMO.with_options(COSMO.AndersonAccelerator; mem = max(accel, 2)),
"alpha" => alpha,
"decompose" => decompose,
"eps_abs" => eps,
@ -49,6 +47,6 @@ function cosmo_optimizer(;
"max_iter" => max_iters,
"verbose" => verbose,
"verbose_timing" => verbose_timing,
"check_termination" => 200,
"check_termination" => 250,
)
end