mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2025-01-13 14:47:34 +01:00
use Cartan matrix to classify root-subsystems
This commit is contained in:
parent
1fb324b49a
commit
b5fa1ac0ef
85
src/roots.jl
85
src/roots.jl
@ -71,39 +71,55 @@ end
|
||||
𝕖(N, i) = Root(ntuple(k -> k == i ? 1 : 0, N))
|
||||
𝕆(N, ::Type{T}) where {T} = Root(ntuple(_ -> zero(T), N))
|
||||
|
||||
reflection(α::Root, β::Root) = β - Int(2dot(α, β) / dot(α, α)) * α
|
||||
function cartan(α, β)
|
||||
return [
|
||||
length(reflection(a, b) - b) / length(a) for a in (α, β), b in (α, β)
|
||||
]
|
||||
end
|
||||
|
||||
"""
|
||||
classify_root_system(α, β)
|
||||
Return the symbol of smallest system generated by roots `α` and `β`.
|
||||
|
||||
The classification is based only on roots length and
|
||||
proportionality/orthogonality.
|
||||
The classification is based only on roots length,
|
||||
proportionality/orthogonality and Cartan matrix.
|
||||
"""
|
||||
function classify_root_system(α::AbstractRoot, β::AbstractRoot)
|
||||
lα, lβ = length(α), length(β)
|
||||
function classify_root_system(
|
||||
α::AbstractRoot,
|
||||
β::AbstractRoot,
|
||||
long::Tuple{Bool,Bool},
|
||||
)
|
||||
if isproportional(α, β)
|
||||
if lα ≈ lβ ≈ √2
|
||||
return :A₁
|
||||
elseif lα ≈ lβ ≈ 2.0
|
||||
if all(long)
|
||||
return :C₁
|
||||
elseif all(.!long) # both short
|
||||
return :A₁
|
||||
else
|
||||
@error "Proportional roots of different length"
|
||||
error("Unknown root system ⟨α, β⟩:\n α = $α\n β = $β")
|
||||
end
|
||||
elseif isorthogonal(α, β)
|
||||
if lα ≈ lβ ≈ √2
|
||||
return Symbol("A₁×A₁")
|
||||
elseif lα ≈ lβ ≈ 2.0
|
||||
if all(long)
|
||||
return Symbol("C₁×C₁")
|
||||
elseif (lα ≈ 2.0 && lβ ≈ √2) || (lα ≈ √2 && lβ ≈ 2)
|
||||
elseif all(.!long) # both short
|
||||
return Symbol("A₁×A₁")
|
||||
elseif any(long)
|
||||
return Symbol("A₁×C₁")
|
||||
else
|
||||
error("Unknown root system ⟨α, β⟩:\n α = $α\n β = $β")
|
||||
end
|
||||
else # ⟨α, β⟩ is 2-dimensional, but they're not orthogonal
|
||||
if lα ≈ lβ ≈ √2
|
||||
a, b, c, d = abs.(cartan(α, β))
|
||||
@assert a == d == 2
|
||||
b, c = b < c ? (b, c) : (c, b)
|
||||
if b == c == 1
|
||||
return :A₂
|
||||
elseif (lα ≈ 2.0 && lβ ≈ √2) || (lα ≈ √2 && lβ ≈ 2)
|
||||
elseif b == 1 && c == 2
|
||||
return :C₂
|
||||
elseif b == 1 && c == 3
|
||||
@warn ":G₂? really?"
|
||||
return :G₂
|
||||
else
|
||||
@error a, b, c, d
|
||||
error("Unknown root system ⟨α, β⟩:\n α = $α\n β = $β")
|
||||
end
|
||||
end
|
||||
@ -130,12 +146,17 @@ function Base.in(r::R, plane::Plane{R}) where {R}
|
||||
return any(isproportional(r, v) for v in plane.vectors)
|
||||
end
|
||||
|
||||
function _islong(α::Root, Ω)
|
||||
lα = length(α)
|
||||
return any(r -> lα - length(r) > eps(lα), Ω)
|
||||
end
|
||||
|
||||
function classify_sub_root_system(
|
||||
Ω::AbstractVector{<:Root{N}},
|
||||
α::Root{N},
|
||||
β::Root{N},
|
||||
) where {N}
|
||||
|
||||
@assert 1 ≤ length(unique(length, Ω)) ≤ 2
|
||||
v = proportional_root_from_system(Ω, α)
|
||||
w = proportional_root_from_system(Ω, β)
|
||||
|
||||
@ -146,28 +167,30 @@ function classify_sub_root_system(
|
||||
l = length(subsystem)
|
||||
if l == 1
|
||||
x = first(subsystem)
|
||||
return classify_root_system(x, x)
|
||||
long = _islong(x, Ω)
|
||||
return classify_root_system(x, -x, (long, long))
|
||||
elseif l == 2
|
||||
return classify_root_system(subsystem...)
|
||||
x, y = subsystem
|
||||
return classify_root_system(x, y, (_islong(x, Ω), _islong(y, Ω)))
|
||||
elseif l == 3
|
||||
a = classify_root_system(subsystem[1], subsystem[2])
|
||||
b = classify_root_system(subsystem[2], subsystem[3])
|
||||
c = classify_root_system(subsystem[1], subsystem[3])
|
||||
x, y, z = subsystem
|
||||
l1, l2, l3 = _islong(x, Ω), _islong(y, Ω), _islong(z, Ω)
|
||||
a = classify_root_system(x, y, (l1, l2))
|
||||
b = classify_root_system(y, z, (l2, l3))
|
||||
c = classify_root_system(x, z, (l1, l3))
|
||||
|
||||
if a == b == c # it's only A₂
|
||||
if :A₂ == a == b == c # it's only A₂
|
||||
return a
|
||||
end
|
||||
|
||||
C = (:C₂, Symbol("C₁×C₁"))
|
||||
if (a ∈ C && b ∈ C && c ∈ C) && (:C₂ ∈ (a, b, c))
|
||||
return :C₂
|
||||
end
|
||||
throw("Unknown subroot system! $((x,y,z))")
|
||||
elseif l == 4
|
||||
for i = 1:l
|
||||
for j = (i+1):l
|
||||
T = classify_root_system(subsystem[i], subsystem[j])
|
||||
T == :C₂ && return :C₂
|
||||
end
|
||||
subtypes = [
|
||||
classify_root_system(x, y, (_islong(x, Ω), _islong(y, Ω))) for
|
||||
x in subsystem for y in subsystem if x ≠ y
|
||||
]
|
||||
if :C₂ in subtypes
|
||||
return :C₂
|
||||
end
|
||||
end
|
||||
@error "Unknown root subsystem generated by" α β
|
||||
|
Loading…
Reference in New Issue
Block a user