1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2025-01-13 14:47:34 +01:00

use Cartan matrix to classify root-subsystems

This commit is contained in:
Marek Kaluba 2023-03-19 20:36:02 +01:00
parent 1fb324b49a
commit b5fa1ac0ef
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15

View File

@ -71,39 +71,55 @@ end
𝕖(N, i) = Root(ntuple(k -> k == i ? 1 : 0, N))
𝕆(N, ::Type{T}) where {T} = Root(ntuple(_ -> zero(T), N))
reflection(α::Root, β::Root) = β - Int(2dot(α, β) / dot(α, α)) * α
function cartan(α, β)
return [
length(reflection(a, b) - b) / length(a) for a in (α, β), b in (α, β)
]
end
"""
classify_root_system(α, β)
Return the symbol of smallest system generated by roots `α` and `β`.
The classification is based only on roots length and
proportionality/orthogonality.
The classification is based only on roots length,
proportionality/orthogonality and Cartan matrix.
"""
function classify_root_system(α::AbstractRoot, β::AbstractRoot)
lα, = length(α), length(β)
function classify_root_system(
α::AbstractRoot,
β::AbstractRoot,
long::Tuple{Bool,Bool},
)
if isproportional(α, β)
if lα 2
return :A₁
elseif lα 2.0
if all(long)
return :C₁
elseif all(.!long) # both short
return :A₁
else
@error "Proportional roots of different length"
error("Unknown root system ⟨α, β⟩:\n α = $α\n β = ")
end
elseif isorthogonal(α, β)
if lα 2
return Symbol("A₁×A₁")
elseif lα 2.0
if all(long)
return Symbol("C₁×C₁")
elseif (lα 2.0 && 2) || (lα 2 && 2)
elseif all(.!long) # both short
return Symbol("A₁×A₁")
elseif any(long)
return Symbol("A₁×C₁")
else
error("Unknown root system ⟨α, β⟩:\n α = $α\n β = ")
end
else # ⟨α, β⟩ is 2-dimensional, but they're not orthogonal
if lα 2
a, b, c, d = abs.(cartan(α, β))
@assert a == d == 2
b, c = b < c ? (b, c) : (c, b)
if b == c == 1
return :A₂
elseif (lα 2.0 && 2) || (lα 2 && 2)
elseif b == 1 && c == 2
return :C₂
elseif b == 1 && c == 3
@warn ":G₂? really?"
return :G₂
else
@error a, b, c, d
error("Unknown root system ⟨α, β⟩:\n α = $α\n β = ")
end
end
@ -130,12 +146,17 @@ function Base.in(r::R, plane::Plane{R}) where {R}
return any(isproportional(r, v) for v in plane.vectors)
end
function _islong(α::Root, Ω)
lα = length(α)
return any(r -> lα - length(r) > eps(lα), Ω)
end
function classify_sub_root_system(
Ω::AbstractVector{<:Root{N}},
α::Root{N},
β::Root{N},
) where {N}
@assert 1 length(unique(length, Ω)) 2
v = proportional_root_from_system(Ω, α)
w = proportional_root_from_system(Ω, β)
@ -146,28 +167,30 @@ function classify_sub_root_system(
l = length(subsystem)
if l == 1
x = first(subsystem)
return classify_root_system(x, x)
long = _islong(x, Ω)
return classify_root_system(x, -x, (long, long))
elseif l == 2
return classify_root_system(subsystem...)
x, y = subsystem
return classify_root_system(x, y, (_islong(x, Ω), _islong(y, Ω)))
elseif l == 3
a = classify_root_system(subsystem[1], subsystem[2])
b = classify_root_system(subsystem[2], subsystem[3])
c = classify_root_system(subsystem[1], subsystem[3])
x, y, z = subsystem
l1, l2, l3 = _islong(x, Ω), _islong(y, Ω), _islong(z, Ω)
a = classify_root_system(x, y, (l1, l2))
b = classify_root_system(y, z, (l2, l3))
c = classify_root_system(x, z, (l1, l3))
if a == b == c # it's only A₂
if :A₂ == a == b == c # it's only A₂
return a
end
C = (:C₂, Symbol("C₁×C₁"))
if (a C && b C && c C) && (:C₂ (a, b, c))
return :C₂
end
throw("Unknown subroot system! $((x,y,z))")
elseif l == 4
for i = 1:l
for j = (i+1):l
T = classify_root_system(subsystem[i], subsystem[j])
T == :C₂ && return :C₂
end
subtypes = [
classify_root_system(x, y, (_islong(x, Ω), _islong(y, Ω))) for
x in subsystem for y in subsystem if x y
]
if :C₂ in subtypes
return :C₂
end
end
@error "Unknown root subsystem generated by" α β