1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-22 16:05:27 +01:00

use Cartan matrix to classify root-subsystems

This commit is contained in:
Marek Kaluba 2023-03-19 20:36:02 +01:00
parent 1fb324b49a
commit b5fa1ac0ef
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15

View File

@ -71,39 +71,55 @@ end
𝕖(N, i) = Root(ntuple(k -> k == i ? 1 : 0, N)) 𝕖(N, i) = Root(ntuple(k -> k == i ? 1 : 0, N))
𝕆(N, ::Type{T}) where {T} = Root(ntuple(_ -> zero(T), N)) 𝕆(N, ::Type{T}) where {T} = Root(ntuple(_ -> zero(T), N))
reflection(α::Root, β::Root) = β - Int(2dot(α, β) / dot(α, α)) * α
function cartan(α, β)
return [
length(reflection(a, b) - b) / length(a) for a in (α, β), b in (α, β)
]
end
""" """
classify_root_system(α, β) classify_root_system(α, β)
Return the symbol of smallest system generated by roots `α` and `β`. Return the symbol of smallest system generated by roots `α` and `β`.
The classification is based only on roots length and The classification is based only on roots length,
proportionality/orthogonality. proportionality/orthogonality and Cartan matrix.
""" """
function classify_root_system(α::AbstractRoot, β::AbstractRoot) function classify_root_system(
lα, = length(α), length(β) α::AbstractRoot,
β::AbstractRoot,
long::Tuple{Bool,Bool},
)
if isproportional(α, β) if isproportional(α, β)
if lα 2 if all(long)
return :A₁
elseif lα 2.0
return :C₁ return :C₁
elseif all(.!long) # both short
return :A₁
else else
@error "Proportional roots of different length"
error("Unknown root system ⟨α, β⟩:\n α = $α\n β = ") error("Unknown root system ⟨α, β⟩:\n α = $α\n β = ")
end end
elseif isorthogonal(α, β) elseif isorthogonal(α, β)
if lα 2 if all(long)
return Symbol("A₁×A₁")
elseif lα 2.0
return Symbol("C₁×C₁") return Symbol("C₁×C₁")
elseif (lα 2.0 && 2) || (lα 2 && 2) elseif all(.!long) # both short
return Symbol("A₁×A₁")
elseif any(long)
return Symbol("A₁×C₁") return Symbol("A₁×C₁")
else
error("Unknown root system ⟨α, β⟩:\n α = $α\n β = ")
end end
else # ⟨α, β⟩ is 2-dimensional, but they're not orthogonal else # ⟨α, β⟩ is 2-dimensional, but they're not orthogonal
if lα 2 a, b, c, d = abs.(cartan(α, β))
@assert a == d == 2
b, c = b < c ? (b, c) : (c, b)
if b == c == 1
return :A₂ return :A₂
elseif (lα 2.0 && 2) || (lα 2 && 2) elseif b == 1 && c == 2
return :C₂ return :C₂
elseif b == 1 && c == 3
@warn ":G₂? really?"
return :G₂
else else
@error a, b, c, d
error("Unknown root system ⟨α, β⟩:\n α = $α\n β = ") error("Unknown root system ⟨α, β⟩:\n α = $α\n β = ")
end end
end end
@ -130,12 +146,17 @@ function Base.in(r::R, plane::Plane{R}) where {R}
return any(isproportional(r, v) for v in plane.vectors) return any(isproportional(r, v) for v in plane.vectors)
end end
function _islong(α::Root, Ω)
lα = length(α)
return any(r -> lα - length(r) > eps(lα), Ω)
end
function classify_sub_root_system( function classify_sub_root_system(
Ω::AbstractVector{<:Root{N}}, Ω::AbstractVector{<:Root{N}},
α::Root{N}, α::Root{N},
β::Root{N}, β::Root{N},
) where {N} ) where {N}
@assert 1 length(unique(length, Ω)) 2
v = proportional_root_from_system(Ω, α) v = proportional_root_from_system(Ω, α)
w = proportional_root_from_system(Ω, β) w = proportional_root_from_system(Ω, β)
@ -146,28 +167,30 @@ function classify_sub_root_system(
l = length(subsystem) l = length(subsystem)
if l == 1 if l == 1
x = first(subsystem) x = first(subsystem)
return classify_root_system(x, x) long = _islong(x, Ω)
return classify_root_system(x, -x, (long, long))
elseif l == 2 elseif l == 2
return classify_root_system(subsystem...) x, y = subsystem
return classify_root_system(x, y, (_islong(x, Ω), _islong(y, Ω)))
elseif l == 3 elseif l == 3
a = classify_root_system(subsystem[1], subsystem[2]) x, y, z = subsystem
b = classify_root_system(subsystem[2], subsystem[3]) l1, l2, l3 = _islong(x, Ω), _islong(y, Ω), _islong(z, Ω)
c = classify_root_system(subsystem[1], subsystem[3]) a = classify_root_system(x, y, (l1, l2))
b = classify_root_system(y, z, (l2, l3))
c = classify_root_system(x, z, (l1, l3))
if a == b == c # it's only A₂ if :A₂ == a == b == c # it's only A₂
return a return a
end end
C = (:C₂, Symbol("C₁×C₁")) throw("Unknown subroot system! $((x,y,z))")
if (a C && b C && c C) && (:C₂ (a, b, c))
return :C₂
end
elseif l == 4 elseif l == 4
for i = 1:l subtypes = [
for j = (i+1):l classify_root_system(x, y, (_islong(x, Ω), _islong(y, Ω))) for
T = classify_root_system(subsystem[i], subsystem[j]) x in subsystem for y in subsystem if x y
T == :C₂ && return :C₂ ]
end if :C₂ in subtypes
return :C₂
end end
end end
@error "Unknown root subsystem generated by" α β @error "Unknown root subsystem generated by" α β