mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-22 16:05:27 +01:00
formatting
This commit is contained in:
parent
daa29f5223
commit
b9a30f02c7
@ -1,8 +1,5 @@
|
||||
###############################################################################
|
||||
#
|
||||
# Settings and filenames
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
abstract type Settings end
|
||||
|
||||
@ -71,10 +68,7 @@ function filename(path::String, name, extension; prefix=nothing, suffix=nothing)
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Approximation by SOS (logged & warmstarted)
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function warmstart(sett::Settings)
|
||||
warmstart_fname = filename(sett, :warmstart)
|
||||
@ -110,11 +104,16 @@ function approximate_by_SOS(sett::Naive,
|
||||
if any(isnan, P)
|
||||
@warn "The solution seems to contain NaNs. Not overriding warmstart.jld"
|
||||
else
|
||||
save(filename(sett, :warmstart), "warmstart", (ws.primal, ws.dual, ws.slack), "P", P, "λ", λ)
|
||||
save(filename(sett, :warmstart),
|
||||
"warmstart", (ws.primal, ws.dual, ws.slack),
|
||||
"P", P,
|
||||
"λ", λ)
|
||||
end
|
||||
|
||||
save(filename(sett, :warmstart, suffix=Dates.now()),
|
||||
"warmstart", (ws.primal, ws.dual, ws.slack), "P", P, "λ", λ)
|
||||
"warmstart", (ws.primal, ws.dual, ws.slack),
|
||||
"P", P,
|
||||
"λ", λ)
|
||||
|
||||
return λ, P
|
||||
end
|
||||
@ -131,7 +130,8 @@ function approximate_by_SOS(sett::Symmetrized,
|
||||
orbit_data
|
||||
catch ex
|
||||
@warn ex.msg
|
||||
isdefined(parent(orderunit), :basis) || throw("You need to define basis of Group Ring to compute orbit decomposition!")
|
||||
Grouprings.hasbasis(parent(orderunit)) ||
|
||||
throw("You need to define basis of Group Ring to compute orbit decomposition!")
|
||||
@info "Computing orbit and Wedderburn decomposition..."
|
||||
orbit_data = OrbitData(parent(orderunit), sett.autS)
|
||||
save(filename(sett, :OrbitData), "OrbitData", orbit_data)
|
||||
@ -156,11 +156,16 @@ function approximate_by_SOS(sett::Symmetrized,
|
||||
if any(any(isnan, P) for P in Ps)
|
||||
@warn "The solution seems to contain NaNs. Not overriding warmstart.jld"
|
||||
else
|
||||
save(filename(sett, :warmstart), "warmstart", (ws.primal, ws.dual, ws.slack), "Ps", Ps, "λ", λ)
|
||||
save(filename(sett, :warmstart),
|
||||
"warmstart", (ws.primal, ws.dual, ws.slack),
|
||||
"Ps", Ps,
|
||||
"λ", λ)
|
||||
end
|
||||
|
||||
save(filename(sett, :warmstart, suffix=Dates.now()),
|
||||
"warmstart", (ws.primal, ws.dual, ws.slack), "Ps", Ps, "λ", λ)
|
||||
"warmstart", (ws.primal, ws.dual, ws.slack),
|
||||
"Ps", Ps,
|
||||
"λ", λ)
|
||||
|
||||
@info "Reconstructing P..."
|
||||
@time P = reconstruct(Ps, orbit_data)
|
||||
@ -169,10 +174,7 @@ function approximate_by_SOS(sett::Symmetrized,
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Checking solution
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function certify_SOS_decomposition(elt::GroupRingElem, orderunit::GroupRingElem,
|
||||
λ::Number, Q::AbstractMatrix; R::Int=2)
|
||||
@ -229,10 +231,7 @@ function spectral_gap(Δ::GroupRingElem, λ::Number, Q::AbstractMatrix; R::Int=2
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Interpreting the numerical results
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
Kazhdan_constant(λ::Number, N::Integer) = sqrt(2*λ/N)
|
||||
Kazhdan_constant(λ::Interval, N::Integer) = IntervalArithmetic.inf(sqrt(2*λ/N))
|
||||
|
@ -4,7 +4,7 @@ isopposite(σ::Generic.Perm, τ::Generic.Perm, i=1, j=2) =
|
||||
|
||||
isadjacent(σ::Generic.Perm, τ::Generic.Perm, i=1, j=2) =
|
||||
(σ[i] == τ[i] && σ[j] ≠ τ[j]) || # first equal, second differ
|
||||
(σ[j] == τ[j] && σ[i] ≠ τ[i]) || # sedond equal, first differ
|
||||
(σ[j] == τ[j] && σ[i] ≠ τ[i]) || # second equal, first differ
|
||||
(σ[i] == τ[j] && σ[j] ≠ τ[i]) || # first σ equal to second τ
|
||||
(σ[j] == τ[i] && σ[i] ≠ τ[j]) # second σ equal to first τ
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user