1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2025-01-13 22:52:34 +01:00

total rewrite with the aim of modularisation

This commit is contained in:
kalmar 2017-02-11 13:28:26 +01:00
parent c59ebe5086
commit c5de9c206f

View File

@ -1,79 +1,104 @@
using JuMP
import SCS: SCSSolver
import Mosek: MosekSolver
function SL₃_generatingset()
workers_processes = addprocs()
function E(i::Int, j::Int, N::Int=3)
@assert i≠j
k = eye(N)
k[i,j] = 1
return k
end
@everywhere push!(LOAD_PATH, "./")
using GroupAlgebras
@everywhere include("property(T).jl")
function E(i::Int, j::Int, N::Int=3)
@assert i≠j
k = eye(N)
k[i,j] = 1
return k
end
function SL_3ZZ_generating_set()
S = [E(1,2), E(1,3), E(2,3)];
S = vcat(S, [x' for x in S]);
S = vcat(S, [inv(x) for x in S]);
return S
end
const ID = eye(3)
function generate_B₂_and_B₄(B₁)
B₂ = products(B₁, B₁);
B₃ = products(B₁, B₂);
B₄ = products(B₁, B₃);
const S₁ = SL_3ZZ_generating_set()
@assert B₄[1:length(B₂)] == B₂
return B₂, B₄;
end
function prepare_Laplacian_and_constraints(S, identity)
B₂, B₄ = generate_B₂_and_B₄(vcat([identity], S))
product_matrix = create_product_matrix(B₄,length(B₂));
sdp_constraints = constraints_from_pm(product_matrix, length(B₄))
L_coeff = splaplacian_coeff(S, B₄);
return GroupAlgebraElement(L_coeff, product_matrix), sdp_constraints
end
function prepare_Δ_sdp_constraints(name::String;cached=true)
f₁ = isfile("$name.product_matrix")
f₂ = isfile("$name.delta.coefficients")
if cached && f₁ && f₂
println("Loading precomputed pm, Δ, sdp_constraints...")
product_matrix = readdlm("$name.product_matrix", Int)
L = readdlm("$name.delta.coefficients")[:, 1]
Δ = GroupAlgebraElement(L, product_matrix)
sdp_constraints = constraints_from_pm(product_matrix)
else
println("Computing pm, Δ, sdp_constraints...")
ID = eye(Int, 3)
S₁ = SL₃_generatingset()
Δ, sdp_constraints = prepare_Laplacian_and_constraints(S₁, ID)
writedlm("$name.delta.coefficients", Δ.coefficients)
writedlm("$name.product_matrix", Δ.product_matrix)
end
return Δ, sdp_constraints
end
const TOL=10.0^-7
# const VERBOSE=true
#solver = SCSSolver(eps=TOL, max_iters=ITERATIONS, verbose=VERBOSE);
# solver = MosekSolver(MSK_DPAR_INTPNT_CO_TOL_REL_GAP=TOL,
# # MSK_DPAR_INTPNT_CO_TOL_PFEAS=1e-15,
# # MSK_DPAR_INTPNT_CO_TOL_DFEAS=1e-15,
# # MSK_IPAR_PRESOLVE_USE=0,
# QUIET=!VERBOSE)
function compute_κ_A(name::String, Δ, sdp_constraints;
cached = true,
tol = TOL,
verbose = VERBOSE,
solver = MosekSolver(INTPNT_CO_TOL_REL_GAP=tol, QUIET=!verbose))
# solver = SCSSolver(eps=TOL, max_iters=ITERATIONS, verbose=VERBOSE))
# κ, A = solve_for_property_T(S₁, solver, verbose=VERBOSE)
f₁ = isfile("$name.kappa")
f₂ = isfile("$name.SDPmatrixA")
if cached && f₁ && f₂
println("Loading precomputed κ, A...")
A = readdlm("$name.SDPmatrixA")
κ = readdlm("$name.kappa")[1]
else
println("Solving SDP problem maximizing κ...")
κ, A = solve_SDP(sdp_constraints, Δ, solver, verbose=verbose)
writedlm("$name.kappa", kappa)
writedlm("$name.SDPmatrixA", A)
end
return κ, A
end
const product_matrix = readdlm("SL3Z.product_matrix", Int)
const L = readdlm("SL3Z.delta.coefficients")[:, 1]
const Δ = GroupAlgebraElement(L, product_matrix)
workers_processes = addprocs()
@everywhere push!(LOAD_PATH, "./")
using GroupAlgebras
@everywhere include("property(T).jl")
const A = readdlm("SL3Z.SDPmatrixA.Mosek")
const κ = readdlm("SL3Z.kappa.Mosek")[1]
const NAME = "SL3Z"
const VERBOSE = true
const TOL=1e-7
const Δ, sdp_constraints = prepare_Δ_sdp_constraints(NAME)
const κ, A = compute_κ_A(NAME, Δ, sdp_constraints)
@assert isapprox(eigvals(A), abs(eigvals(A)), atol=TOL)
@assert A == Symmetric(A)
if κ > 0
@time T = _distance_to_positive_cone(Δ, κ, A, tol=TOL, verbose=VERBOSE)
const A_sqrt = real(sqrtm(A))
if T < 0
println("$NAME HAS property (T)!")
else
println("$NAME may NOT HAVE property (T)!")
end
const SOS_fp_diff, SOS_fp_L₁_distance = check_solution(κ, A_sqrt, Δ)
@show SOS_fp_L₁_distance
@show GroupAlgebras.ɛ(SOS_fp_diff)
const κ_rational = rationalize(BigInt, κ, tol=TOL)
const A_sqrt_rational = rationalize(BigInt, A_sqrt, tol=TOL)
const Δ_rational = rationalize(BigInt, Δ, tol=TOL)
const SOS_rational_diff, SOS_rat_L₁_distance = check_solution(κ_rational, A_sqrt_rational, Δ_rational)
@assert isa(SOS_rat_L₁_distance, Rational{BigInt})
@show float(SOS_rat_L₁_distance)
@show float(GroupAlgebras.ɛ(SOS_rational_diff))
const A_sqrt_augmented = correct_to_augmentation_ideal(A_sqrt_rational)
const SOS_rational_aug_diff, SOS_aug_rat_L₁_distance = check_solution(κ_rational, A_sqrt_augmented, Δ_rational)
@assert isa(SOS_aug_rat_L₁_distance, Rational{BigInt})
@assert GroupAlgebras.ɛ(SOS_rational_aug_diff) == 0//1
@show float(SOS_aug_rat_L₁_distance)
@show float(κ_rational - 2^3*SOS_aug_rat_L₁_distance)
else
println(" < 0: $NAME may NOT HAVE property (T)!")
end
rmprocs(workers_processes)