1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-19 07:20:28 +01:00

bite the bullet: implement FreeGroups

This commit is contained in:
kalmar 2017-01-17 08:01:22 +01:00
parent 0ff0eefbd5
commit d21d10228b

221
FreeGroups.jl Normal file
View File

@ -0,0 +1,221 @@
module FreeGroups
export FGSymbol, FGWord, FGAutomorphism
import Base: length, ==, show, convert
immutable FGSymbol
gen::String
pow::Int
end
(==)(s::FGSymbol, t::FGSymbol) = s.gen == t.gen && s.pow == t.pow
immutable FGWord
symbols::Vector{FGSymbol}
end
length(s::FGSymbol) = (s.pow == 0 ? 0 : 1)
length(W::FGWord) = length(W.symbols)
function show(io::IO, s::FGSymbol)
if s.pow == 1
print(io, (s.gen))
elseif s.pow == 0
print(io, "(id)")
else
print(io, (s.gen)*"^$(s.pow)")
end
end
FGSymbol(x::String) = FGSymbol(x,1)
FGWord() = FGWord(Vector{FGSymbol}())
FGWord(s::FGSymbol) = FGWord([s])
convert(::Type{FGWord}, s::FGSymbol) = FGWord(s)
import Base: one, inv, reduce, push!, unshift!
one(s::FGSymbol) = FGSymbol(s.gen, 0)
one(::Type{FGWord}) = FGWord()
one(w::FGWord) = FGWord()
inv(s::FGSymbol) = FGSymbol(s.gen, -s.pow)
inv(W::FGWord) = FGWord(reverse([inv(s) for s in W.symbols]))
reduce!(s::FGSymbol) = s
function reduce!(W::FGWord)
for i in 1:length(W)-1
if W.symbols[i].gen == W.symbols[i+1].gen
p1 = W.symbols[i].pow
p2 = W.symbols[i+1].pow
W.symbols[i+1] = FGSymbol(W.symbols[i].gen, p1 + p2)
W.symbols[i] = one(W.symbols[i])
end
end
deleteat!(W.symbols, find(x -> x.pow == 0, W.symbols))
return W
end
reduce(W::FGWord) = reduce!(deepcopy(W))
(==)(W::FGWord, Z::FGWord) = reduce(W).symbols == reduce(Z).symbols
function show(io::IO, W::FGWord)
if length(W) == 0
print(io, "(id)")
else
join(io, [string(s) for s in W.symbols], "*")
end
end;
push!(W::FGWord, x...) = push!(W.symbols, x...)
unshift!(W::FGWord, x...) = unshift!(W.symbols, reverse(x)...)
function r_multiply!(W::FGWord, x...; reduced::Bool=true)
if length(x) > 0
push!(W, x...)
end
if reduced
reduce!(W)
end
return W
end
function l_multiply!(W::FGWord, x...; reduced::Bool=true)
if length(x) > 0
unshift!(W, x...)
end
if reduced
reduce!(W)
end
return W
end
r_multiply(W::FGWord, x...; reduced::Bool=true) =
r_multiply!(deepcopy(W),x..., reduced=reduced)
l_multiply(W::FGWord, x...; reduced::Bool=true) =
l_multiply!(deepcopy(W),x..., reduced=reduced)
import Base: *, ^
(*)(W::FGWord, Z::FGWord) = r_multiply(W, Z.symbols...)
(*)(s::FGSymbol, t::FGSymbol) = FGWord(s)*FGWord(t)
(*)(W::FGWord, s::FGSymbol) = W*FGWord(s)
(*)(s::FGSymbol, W::FGWord) = FGWord(s)*W
(^)(x::FGSymbol, n::Integer) = FGSymbol(x.gen, x.pow*n)
function power_by_squaring(x::FGWord, p::Integer)
if p < 0
return power_by_squaring(inv(x), -p)
elseif p == 0
return one(x)
elseif p == 1
return deepcopy(x)
elseif p == 2
return x*x
end
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) > 0
x *= x
end
y = x
while p > 0
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) >= 0
x *= x
end
y *= x
end
return reduce!(y)
end
(^)(x::FGWord, n::Integer) = power_by_squaring(x,n)
type FGAutomorphism
domain::Vector{FGSymbol}
image::Vector{FGWord}
map::Function
function FGAutomorphism(domain::Vector{FGSymbol}, image::Vector{FGWord}, map::Function)
length(domain) == length(unique(domain)) ||
throw(ArgumentError("The elements of $domain are not unique"))
length(domain) == length(image) ||
throw(ArgumentError("Dimensions of image and domain must match"))
# Set(vcat([[s.gen for s in reduce!(x).symbols]
# for x in image]...)) == Set(s.gen for s in domain) ||
# throw(ArgumentError("Are You sure that $image defines an automorphism??"))
new(domain, image, map)
end
end
function show(io::IO, X::FGAutomorphism)
title = "Endomorphism of Free Group on $(length(X.domain)) generators, sending"
map = ["$x$y" for (x,y) in zip(X.domain, X.image)]
join(io, vcat(title,map), "\n")
end
(==)(f::FGAutomorphism, g::FGAutomorphism) =
f.domain == g.domain && f.image == g.image
function aut_func_from_table(table::Vector{Tuple{Int,Int}}, GroupIdentity=one(FGWord))
if length(table) == 0
# warn("The map is not an automorphism")
nothing
end
return v->reduce(*,GroupIdentity, v[idx]^power for (idx, power) in table)
end
function aut_func_from_word(domain, w::FGWord)
table = Vector{Tuple{Int, Int}}()
for s in w.symbols
pair = (findfirst([x.gen for x in domain], s.gen), s.pow)
push!(table, pair)
end
return aut_func_from_table(table)
end
function FGMap(domain::Vector{FGSymbol}, image::Vector{FGWord})
function_vector = Vector{Function}()
for word in image
push!(function_vector, aut_func_from_word(domain, word))
end
return v -> Vector{FGWord}([f(v) for f in function_vector])
end
FGAutomorphism(domain::Vector{FGSymbol}, image::Vector{FGWord}) =
FGAutomorphism(domain, image, FGMap(domain, image))
FGAutomorphism(domain::Vector{FGSymbol}, image::Vector{FGSymbol}) =
FGAutomorphism(domain, Vector{FGWord}(image))
function FGAutomorphism(domain::Vector, image::Vector)
FGAutomorphism(Vector{FGSymbol}(domain), Vector{FGWord}(image))
end
function FGAutomorphism(domain, image)
FGAutomorphism([domain...], [image...])
end
"""Computes the composition g∘f of two morphisms"""
function compose(f::FGAutomorphism, g::FGAutomorphism)
if length(f.image) != length(g.domain)
throw(ArgumentError("Cannot compose $f and $g"))
else
h(v) = g.map(f.map(v))
return FGAutomorphism(f.domain, h(f.domain), h)
end
end
(*)(f::FGAutomorphism, g::FGAutomorphism) = compose(f,g)
end