mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-22 16:05:27 +01:00
Bootstrap Julia Package
This commit is contained in:
parent
22750b0be5
commit
d6435c1d44
1
.codecov.yml
Normal file
1
.codecov.yml
Normal file
@ -0,0 +1 @@
|
|||||||
|
comment: false
|
7
.gitignore
vendored
7
.gitignore
vendored
@ -1,4 +1,3 @@
|
|||||||
.*~
|
*.jl.cov
|
||||||
.ipynb_checkpoints
|
*.jl.*.cov
|
||||||
*.ipynb
|
*.jl.mem
|
||||||
*.gws
|
|
||||||
|
19
.travis.yml
Normal file
19
.travis.yml
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
# Documentation: http://docs.travis-ci.com/user/languages/julia/
|
||||||
|
language: julia
|
||||||
|
os:
|
||||||
|
- linux
|
||||||
|
- osx
|
||||||
|
julia:
|
||||||
|
- release
|
||||||
|
- nightly
|
||||||
|
notifications:
|
||||||
|
email: false
|
||||||
|
# uncomment the following lines to override the default test script
|
||||||
|
#script:
|
||||||
|
# - if [[ -a .git/shallow ]]; then git fetch --unshallow; fi
|
||||||
|
# - julia -e 'Pkg.clone(pwd()); Pkg.build("Property(T)"); Pkg.test("Property(T)"; coverage=true)'
|
||||||
|
after_success:
|
||||||
|
# push coverage results to Coveralls
|
||||||
|
- julia -e 'cd(Pkg.dir("Property(T)")); Pkg.add("Coverage"); using Coverage; Coveralls.submit(Coveralls.process_folder())'
|
||||||
|
# push coverage results to Codecov
|
||||||
|
- julia -e 'cd(Pkg.dir("Property(T)")); Pkg.add("Coverage"); using Coverage; Codecov.submit(Codecov.process_folder())'
|
34
appveyor.yml
Normal file
34
appveyor.yml
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
environment:
|
||||||
|
matrix:
|
||||||
|
- JULIAVERSION: "julialang/bin/winnt/x86/0.5/julia-0.5-latest-win32.exe"
|
||||||
|
- JULIAVERSION: "julialang/bin/winnt/x64/0.5/julia-0.5-latest-win64.exe"
|
||||||
|
- JULIAVERSION: "julianightlies/bin/winnt/x86/julia-latest-win32.exe"
|
||||||
|
- JULIAVERSION: "julianightlies/bin/winnt/x64/julia-latest-win64.exe"
|
||||||
|
|
||||||
|
branches:
|
||||||
|
only:
|
||||||
|
- master
|
||||||
|
- /release-.*/
|
||||||
|
|
||||||
|
notifications:
|
||||||
|
- provider: Email
|
||||||
|
on_build_success: false
|
||||||
|
on_build_failure: false
|
||||||
|
on_build_status_changed: false
|
||||||
|
|
||||||
|
install:
|
||||||
|
# Download most recent Julia Windows binary
|
||||||
|
- ps: (new-object net.webclient).DownloadFile(
|
||||||
|
$("http://s3.amazonaws.com/"+$env:JULIAVERSION),
|
||||||
|
"C:\projects\julia-binary.exe")
|
||||||
|
# Run installer silently, output to C:\projects\julia
|
||||||
|
- C:\projects\julia-binary.exe /S /D=C:\projects\julia
|
||||||
|
|
||||||
|
build_script:
|
||||||
|
# Need to convert from shallow to complete for Pkg.clone to work
|
||||||
|
- IF EXIST .git\shallow (git fetch --unshallow)
|
||||||
|
- C:\projects\julia\bin\julia -e "versioninfo();
|
||||||
|
Pkg.clone(pwd(), \"Property(T)\"); Pkg.build(\"Property(T)\")"
|
||||||
|
|
||||||
|
test_script:
|
||||||
|
- C:\projects\julia\bin\julia -e "Pkg.test(\"Property(T)\")"
|
366
property(T).jl
366
property(T).jl
@ -1,366 +0,0 @@
|
|||||||
using JuMP
|
|
||||||
import MathProgBase: AbstractMathProgSolver
|
|
||||||
import Base: rationalize
|
|
||||||
using GroupAlgebras
|
|
||||||
|
|
||||||
using ProgressMeter
|
|
||||||
using ValidatedNumerics
|
|
||||||
|
|
||||||
function create_product_matrix(basis, limit)
|
|
||||||
product_matrix = zeros(Int, (limit,limit))
|
|
||||||
basis_dict = Dict{Array, Int}(x => i
|
|
||||||
for (i,x) in enumerate(basis))
|
|
||||||
for i in 1:limit
|
|
||||||
x_inv::eltype(basis) = inv(basis[i])
|
|
||||||
for j in 1:limit
|
|
||||||
w = x_inv*basis[j]
|
|
||||||
product_matrix[i,j] = basis_dict[w]
|
|
||||||
# index = findfirst(basis, w)
|
|
||||||
# index ≠ 0 || throw(ArgumentError("Product is not supported on basis: $w"))
|
|
||||||
# product_matrix[i,j] = index
|
|
||||||
end
|
|
||||||
end
|
|
||||||
return product_matrix
|
|
||||||
end
|
|
||||||
|
|
||||||
function constraints_from_pm(pm, total_length=maximum(pm))
|
|
||||||
n = size(pm,1)
|
|
||||||
constraints = constraints = [Array{Int,1}[] for x in 1:total_length]
|
|
||||||
for j in 1:n
|
|
||||||
Threads.@threads for i in 1:n
|
|
||||||
idx = pm[i,j]
|
|
||||||
push!(constraints[idx], [i,j])
|
|
||||||
end
|
|
||||||
end
|
|
||||||
return constraints
|
|
||||||
end
|
|
||||||
|
|
||||||
function splaplacian_coeff(S, basis, n=length(basis))
|
|
||||||
result = spzeros(n)
|
|
||||||
result[1] = float(length(S))
|
|
||||||
for s in S
|
|
||||||
ind = findfirst(basis, s)
|
|
||||||
result[ind] += -1.0
|
|
||||||
end
|
|
||||||
return result
|
|
||||||
end
|
|
||||||
|
|
||||||
function laplacian_coeff(S, basis)
|
|
||||||
return full(splaplacian_coeff(S,basis))
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
||||||
function create_SDP_problem(matrix_constraints, Δ::GroupAlgebraElement; upper_bound=Inf)
|
|
||||||
N = size(Δ.product_matrix,1)
|
|
||||||
const Δ² = Δ*Δ
|
|
||||||
@assert length(Δ) == length(matrix_constraints)
|
|
||||||
m = JuMP.Model();
|
|
||||||
JuMP.@variable(m, A[1:N, 1:N], SDP)
|
|
||||||
JuMP.@SDconstraint(m, A >= 0)
|
|
||||||
JuMP.@constraint(m, sum(A[i] for i in eachindex(A)) == 0)
|
|
||||||
JuMP.@variable(m, κ >= 0.0)
|
|
||||||
if upper_bound < Inf
|
|
||||||
JuMP.@constraint(m, κ <= upper_bound)
|
|
||||||
end
|
|
||||||
JuMP.@objective(m, Max, κ)
|
|
||||||
|
|
||||||
for (pairs, δ², δ) in zip(matrix_constraints, Δ².coefficients, Δ.coefficients)
|
|
||||||
JuMP.@constraint(m, sum(A[i,j] for (i,j) in pairs) == δ² - κ*δ)
|
|
||||||
end
|
|
||||||
return m
|
|
||||||
end
|
|
||||||
|
|
||||||
function solve_SDP(SDP_problem, solver)
|
|
||||||
@show SDP_problem
|
|
||||||
@show solver
|
|
||||||
|
|
||||||
JuMP.setsolver(SDP_problem, solver);
|
|
||||||
# @time MathProgBase.writeproblem(SDP_problem, "/tmp/SDP_problem")
|
|
||||||
solution_status = JuMP.solve(SDP_problem);
|
|
||||||
|
|
||||||
if solution_status != :Optimal
|
|
||||||
warn("The solver did not solve the problem successfully!")
|
|
||||||
end
|
|
||||||
@show solution_status
|
|
||||||
|
|
||||||
κ = JuMP.getvalue(JuMP.getvariable(SDP_problem, :κ))
|
|
||||||
A = JuMP.getvalue(JuMP.getvariable(SDP_problem, :A))
|
|
||||||
return κ, A
|
|
||||||
end
|
|
||||||
|
|
||||||
function EOI{T<:Number}(Δ::GroupAlgebraElement{T}, κ::T)
|
|
||||||
return Δ*Δ - κ*Δ
|
|
||||||
end
|
|
||||||
|
|
||||||
function square_as_elt(vector, elt)
|
|
||||||
zzz = zeros(elt.coefficients)
|
|
||||||
zzz[1:length(vector)] = vector
|
|
||||||
# new_base_elt = GroupAlgebraElement(zzz, elt.product_matrix)
|
|
||||||
# return (new_base_elt*new_base_elt).coefficients
|
|
||||||
return GroupAlgebras.algebra_multiplication(zzz, zzz, elt.product_matrix)
|
|
||||||
end
|
|
||||||
|
|
||||||
function compute_SOS{T<:Number}(sqrt_matrix::Array{T,2},
|
|
||||||
elt::GroupAlgebraElement{T})
|
|
||||||
n = size(sqrt_matrix,2)
|
|
||||||
result = zeros(T, length(elt.coefficients))
|
|
||||||
p = Progress(n, 1, "Checking SOS decomposition...", 50)
|
|
||||||
for i in 1:n
|
|
||||||
result .+= square_as_elt(sqrt_matrix[:,i], elt)
|
|
||||||
next!(p)
|
|
||||||
end
|
|
||||||
return GroupAlgebraElement{T}(result, elt.product_matrix)
|
|
||||||
end
|
|
||||||
|
|
||||||
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
|
|
||||||
sqrt_corrected = similar(sqrt_matrix)
|
|
||||||
l = size(sqrt_matrix,2)
|
|
||||||
for i in 1:l
|
|
||||||
col = view(sqrt_matrix,:,i)
|
|
||||||
sqrt_corrected[:,i] = col - sum(col)//l
|
|
||||||
# @assert sum(sqrt_corrected[:,i]) == 0
|
|
||||||
end
|
|
||||||
return sqrt_corrected
|
|
||||||
end
|
|
||||||
|
|
||||||
function check_solution{T<:Number}(κ::T, sqrt_matrix::Array{T,2}, Δ::GroupAlgebraElement{T}; verbose=true, augmented=false)
|
|
||||||
result = compute_SOS(sqrt_matrix, Δ)
|
|
||||||
if augmented
|
|
||||||
epsilon = GroupAlgebras.ɛ(result)
|
|
||||||
if isa(epsilon, Interval)
|
|
||||||
@assert 0 in epsilon
|
|
||||||
elseif isa(epsilon, Rational)
|
|
||||||
@assert epsilon == 0//1
|
|
||||||
else
|
|
||||||
warn("Does checking for augmentation has meaning for $(typeof(epsilon))?")
|
|
||||||
end
|
|
||||||
end
|
|
||||||
SOS_diff = EOI(Δ, κ) - result
|
|
||||||
|
|
||||||
eoi_SOS_L₁_dist = norm(SOS_diff,1)
|
|
||||||
|
|
||||||
if verbose
|
|
||||||
@show κ
|
|
||||||
if augmented
|
|
||||||
println("ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) = ", GroupAlgebras.ɛ(SOS_diff))
|
|
||||||
else
|
|
||||||
ɛ_dist = GroupAlgebras.ɛ(SOS_diff)
|
|
||||||
if typeof(ɛ_dist) <: Interval
|
|
||||||
ɛ_dist = ɛ_dist.lo
|
|
||||||
end
|
|
||||||
@printf("ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) ≈ %.10f\n", ɛ_dist)
|
|
||||||
end
|
|
||||||
|
|
||||||
L₁_dist = eoi_SOS_L₁_dist
|
|
||||||
if typeof(L₁_dist) <: Interval
|
|
||||||
L₁_dist = L₁_dist.lo
|
|
||||||
end
|
|
||||||
@printf("‖Δ² - κΔ - ∑ξᵢ*ξᵢ‖₁ ≈ %.10f\n", L₁_dist)
|
|
||||||
end
|
|
||||||
|
|
||||||
distance_to_cone = κ - 2^3*eoi_SOS_L₁_dist
|
|
||||||
return distance_to_cone
|
|
||||||
end
|
|
||||||
|
|
||||||
import ValidatedNumerics.±
|
|
||||||
function (±)(X::AbstractArray, tol::Real)
|
|
||||||
r{T}(x::T) = ( x==zero(T) ? @interval(x) : x ± tol)
|
|
||||||
return r.(X)
|
|
||||||
end
|
|
||||||
|
|
||||||
(±)(X::GroupAlgebraElement, tol::Real) = GroupAlgebraElement(X.coefficients ± tol, X.product_matrix)
|
|
||||||
|
|
||||||
function Base.rationalize{T<:Integer, S<:Real}(::Type{T},
|
|
||||||
X::AbstractArray{S}; tol::Real=eps(eltype(X)))
|
|
||||||
r(x) = rationalize(T, x, tol=tol)
|
|
||||||
return r.(X)
|
|
||||||
end
|
|
||||||
|
|
||||||
ℚ(x, tol::Real) = rationalize(BigInt, x, tol=tol)
|
|
||||||
|
|
||||||
|
|
||||||
function ℚ_distance_to_positive_cone(Δ::GroupAlgebraElement, κ, A;
|
|
||||||
tol=1e-7, verbose=true, rational=false)
|
|
||||||
|
|
||||||
isapprox(eigvals(A), abs(eigvals(A)), atol=tol) ||
|
|
||||||
warn("The solution matrix doesn't seem to be positive definite!")
|
|
||||||
@assert A == Symmetric(A)
|
|
||||||
A_sqrt = real(sqrtm(A))
|
|
||||||
|
|
||||||
# println("")
|
|
||||||
# println("Checking in floating-point arithmetic...")
|
|
||||||
# @time fp_distance = check_solution(κ, A_sqrt, Δ, verbose=verbose)
|
|
||||||
# println("Floating point distance (to positive cone) ≈ $(Float64(trunc(fp_distance,8)))")
|
|
||||||
# println("-------------------------------------------------------------")
|
|
||||||
# println("")
|
|
||||||
#
|
|
||||||
# if fp_distance ≤ 0
|
|
||||||
# return fp_distance
|
|
||||||
# end
|
|
||||||
|
|
||||||
println("Checking in interval arithmetic...")
|
|
||||||
A_sqrtᴵ = A_sqrt ± tol
|
|
||||||
κᴵ = κ ± tol
|
|
||||||
Δᴵ = Δ ± tol
|
|
||||||
@time Interval_distance = check_solution(κᴵ, A_sqrtᴵ, Δᴵ, verbose=verbose)
|
|
||||||
# @assert isa(ℚ_distance, Rational)
|
|
||||||
println("The actual distance (to positive cone) is contained in $Interval_distance")
|
|
||||||
println("-------------------------------------------------------------")
|
|
||||||
println("")
|
|
||||||
|
|
||||||
if Interval_distance.lo ≤ 0
|
|
||||||
return Interval_distance.lo
|
|
||||||
end
|
|
||||||
|
|
||||||
println("Projecting columns of A_sqrt to the augmentation ideal...")
|
|
||||||
A_sqrt_ℚ = ℚ(A_sqrt, tol)
|
|
||||||
A_sqrt_ℚ_aug = correct_to_augmentation_ideal(A_sqrt_ℚ)
|
|
||||||
κ_ℚ = ℚ(κ, tol)
|
|
||||||
Δ_ℚ = ℚ(Δ, tol)
|
|
||||||
|
|
||||||
A_sqrt_ℚ_augᴵ = A_sqrt_ℚ_aug ± tol
|
|
||||||
κᴵ = κ_ℚ ± tol
|
|
||||||
Δᴵ = Δ_ℚ ± tol
|
|
||||||
@time Interval_dist_to_Σ² = check_solution(κᴵ, A_sqrt_ℚ_augᴵ, Δᴵ, verbose=verbose, augmented=true)
|
|
||||||
println("The Augmentation-projected actual distance (to positive cone) is contained in $Interval_dist_to_Σ²")
|
|
||||||
println("-------------------------------------------------------------")
|
|
||||||
println("")
|
|
||||||
|
|
||||||
if Interval_dist_to_Σ².lo ≤ 0 || !rational
|
|
||||||
return Interval_dist_to_Σ².lo
|
|
||||||
else
|
|
||||||
|
|
||||||
println("Checking Projected SOS decomposition in exact rational arithmetic...")
|
|
||||||
@time ℚ_dist_to_Σ² = check_solution(κ_ℚ, A_sqrt_ℚ_aug, Δ_ℚ, verbose=verbose, augmented=true)
|
|
||||||
@assert isa(ℚ_dist_to_Σ², Rational)
|
|
||||||
println("Augmentation-projected rational distance (to positive cone) ≥ $(Float64(trunc(ℚ_dist_to_Σ²,8)))")
|
|
||||||
println("-------------------------------------------------------------")
|
|
||||||
return ℚ_dist_to_Σ²
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
function pmΔfilenames(name::String)
|
|
||||||
if !isdir(name)
|
|
||||||
mkdir(name)
|
|
||||||
end
|
|
||||||
prefix = name
|
|
||||||
pm_filename = joinpath(prefix, "product_matrix.jld")
|
|
||||||
Δ_coeff_filename = joinpath(prefix, "delta.coefficients.jld")
|
|
||||||
return pm_filename, Δ_coeff_filename
|
|
||||||
end
|
|
||||||
|
|
||||||
function κSDPfilenames(name::String)
|
|
||||||
if !isdir(name)
|
|
||||||
mkdir(name)
|
|
||||||
end
|
|
||||||
prefix = name
|
|
||||||
κ_filename = joinpath(prefix, "kappa.jld")
|
|
||||||
SDP_filename = joinpath(prefix, "SDPmatrixA.jld")
|
|
||||||
return κ_filename, SDP_filename
|
|
||||||
end
|
|
||||||
|
|
||||||
function ΔandSDPconstraints(name::String)
|
|
||||||
pm_fname, Δ_fname = pmΔfilenames(name)
|
|
||||||
f₁ = isfile(pm_fname)
|
|
||||||
f₂ = isfile(Δ_fname)
|
|
||||||
if f₁ && f₂
|
|
||||||
println("Loading precomputed pm, Δ, sdp_constraints...")
|
|
||||||
product_matrix = load(pm_fname, "pm")
|
|
||||||
L = load(Δ_fname, "Δ")[:, 1]
|
|
||||||
Δ = GroupAlgebraElement(L, Array{Int,2}(product_matrix))
|
|
||||||
sdp_constraints = constraints_from_pm(product_matrix)
|
|
||||||
else
|
|
||||||
throw(ArgumentError("You need to precompute pm and Δ to load it!"))
|
|
||||||
end
|
|
||||||
return Δ, sdp_constraints
|
|
||||||
end
|
|
||||||
|
|
||||||
function ΔandSDPconstraints(name::String, ID, generating_func::Function)
|
|
||||||
pm_fname, Δ_fname = pmΔfilenames(name)
|
|
||||||
Δ, sdp_constraints = ΔandSDPconstraints(ID, generating_func())
|
|
||||||
save(pm_fname, "pm", Δ.product_matrix)
|
|
||||||
save(Δ_fname, "Δ", Δ.coefficients)
|
|
||||||
return Δ, sdp_constraints
|
|
||||||
end
|
|
||||||
|
|
||||||
function κandA(name::String)
|
|
||||||
κ_fname, SDP_fname = κSDPfilenames(name)
|
|
||||||
f₁ = isfile(κ_fname)
|
|
||||||
f₂ = isfile(SDP_fname)
|
|
||||||
if f₁ && f₂
|
|
||||||
println("Loading precomputed κ, A...")
|
|
||||||
κ = load(κ_fname, "κ")
|
|
||||||
A = load(SDP_fname, "A")
|
|
||||||
else
|
|
||||||
throw(ArgumentError("You need to precompute κ and SDP matrix A to load it!"))
|
|
||||||
end
|
|
||||||
return κ, A
|
|
||||||
end
|
|
||||||
|
|
||||||
function κandA(name::String, sdp_constraints, Δ::GroupAlgebraElement, solver::AbstractMathProgSolver; upper_bound=Inf)
|
|
||||||
println("Creating SDP problem...")
|
|
||||||
@time SDP_problem = create_SDP_problem(sdp_constraints, Δ; upper_bound=upper_bound)
|
|
||||||
println("Solving SDP problem maximizing κ...")
|
|
||||||
κ, A = solve_SDP(SDP_problem, solver)
|
|
||||||
κ_fname, A_fname = κSDPfilenames(name)
|
|
||||||
if κ > 0
|
|
||||||
save(κ_fname, "κ", κ)
|
|
||||||
save(A_fname, "A", A)
|
|
||||||
else
|
|
||||||
throw(ErrorException("Solver $solver did not produce a valid solution!: κ = $κ"))
|
|
||||||
end
|
|
||||||
return κ, A
|
|
||||||
end
|
|
||||||
|
|
||||||
function check_property_T(name::String, ID, generate_B₄::Function;
|
|
||||||
verbose=true, tol=1e-6, upper_bound=Inf)
|
|
||||||
|
|
||||||
# solver = MosekSolver(INTPNT_CO_TOL_REL_GAP=tol, QUIET=!verbose)
|
|
||||||
solver = SCSSolver(eps=tol, max_iters=100000, verbose=verbose)
|
|
||||||
|
|
||||||
@show name
|
|
||||||
@show verbose
|
|
||||||
@show tol
|
|
||||||
|
|
||||||
|
|
||||||
Δ, sdp_constraints = try
|
|
||||||
ΔandSDPconstraints(name)
|
|
||||||
catch err
|
|
||||||
if isa(err, ArgumentError)
|
|
||||||
ΔandSDPconstraints(name, ID, generate_B₄)
|
|
||||||
else
|
|
||||||
throw(err)
|
|
||||||
end
|
|
||||||
end
|
|
||||||
println("|S| = $(countnz(Δ.coefficients) -1)")
|
|
||||||
@show length(Δ)
|
|
||||||
@show size(Δ.product_matrix)
|
|
||||||
|
|
||||||
κ, A = try
|
|
||||||
κandA(name)
|
|
||||||
catch err
|
|
||||||
if isa(err, ArgumentError)
|
|
||||||
κandA(name, sdp_constraints, Δ, solver; upper_bound=upper_bound)
|
|
||||||
else
|
|
||||||
throw(err)
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
@show κ
|
|
||||||
@show sum(A)
|
|
||||||
@show maximum(A)
|
|
||||||
@show minimum(A)
|
|
||||||
|
|
||||||
if κ > 0
|
|
||||||
|
|
||||||
true_kappa = ℚ_distance_to_positive_cone(Δ, κ, A, tol=tol, verbose=verbose, rational=true)
|
|
||||||
true_kappa = Float64(trunc(true_kappa,12))
|
|
||||||
if true_kappa > 0
|
|
||||||
println("κ($name, S) ≥ $true_kappa: Group HAS property (T)!")
|
|
||||||
else
|
|
||||||
println("κ($name, S) ≥ $true_kappa: Group may NOT HAVE property (T)!")
|
|
||||||
end
|
|
||||||
else
|
|
||||||
println("κ($name, S) ≥ $κ < 0: Tells us nothing about property (T)")
|
|
||||||
end
|
|
||||||
end
|
|
133
src/GroupAlgebras.jl
Normal file
133
src/GroupAlgebras.jl
Normal file
@ -0,0 +1,133 @@
|
|||||||
|
module GroupAlgebras
|
||||||
|
|
||||||
|
import Base: convert, show, isequal, ==
|
||||||
|
import Base: +, -, *, //
|
||||||
|
import Base: size, length, norm, rationalize
|
||||||
|
|
||||||
|
export GroupAlgebraElement
|
||||||
|
|
||||||
|
|
||||||
|
immutable GroupAlgebraElement{T<:Number}
|
||||||
|
coefficients::AbstractVector{T}
|
||||||
|
product_matrix::Array{Int,2}
|
||||||
|
# basis::Array{Any,1}
|
||||||
|
|
||||||
|
function GroupAlgebraElement(coefficients::AbstractVector,
|
||||||
|
product_matrix::Array{Int,2})
|
||||||
|
|
||||||
|
size(product_matrix, 1) == size(product_matrix, 2) ||
|
||||||
|
throw(ArgumentError("Product matrix has to be square"))
|
||||||
|
new(coefficients, product_matrix)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
# GroupAlgebraElement(c,pm,b) = GroupAlgebraElement(c,pm)
|
||||||
|
GroupAlgebraElement{T}(c::AbstractVector{T},pm) = GroupAlgebraElement{T}(c,pm)
|
||||||
|
|
||||||
|
convert{T<:Number}(::Type{T}, X::GroupAlgebraElement) =
|
||||||
|
GroupAlgebraElement(convert(AbstractVector{T}, X.coefficients), X.product_matrix)
|
||||||
|
|
||||||
|
show{T}(io::IO, X::GroupAlgebraElement{T}) = print(io,
|
||||||
|
"Element of Group Algebra over $T of length $(length(X)):\n $(X.coefficients)")
|
||||||
|
|
||||||
|
|
||||||
|
function isequal{T, S}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{S})
|
||||||
|
if T != S
|
||||||
|
warn("Comparing elements with different coefficients Rings!")
|
||||||
|
end
|
||||||
|
X.product_matrix == Y.product_matrix || return false
|
||||||
|
X.coefficients == Y.coefficients || return false
|
||||||
|
return true
|
||||||
|
end
|
||||||
|
|
||||||
|
(==)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = isequal(X,Y)
|
||||||
|
|
||||||
|
function add{T<:Number}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{T})
|
||||||
|
X.product_matrix == Y.product_matrix || throw(ArgumentError(
|
||||||
|
"Elements don't seem to belong to the same Group Algebra!"))
|
||||||
|
return GroupAlgebraElement(X.coefficients+Y.coefficients, X.product_matrix)
|
||||||
|
end
|
||||||
|
|
||||||
|
function add{T<:Number, S<:Number}(X::GroupAlgebraElement{T},
|
||||||
|
Y::GroupAlgebraElement{S})
|
||||||
|
warn("Adding elements with different base rings!")
|
||||||
|
return GroupAlgebraElement(+(promote(X.coefficients, Y.coefficients)...),
|
||||||
|
X.product_matrix)
|
||||||
|
end
|
||||||
|
|
||||||
|
(+)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,Y)
|
||||||
|
(-)(X::GroupAlgebraElement) = GroupAlgebraElement(-X.coefficients, X.product_matrix)
|
||||||
|
(-)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,-Y)
|
||||||
|
|
||||||
|
function algebra_multiplication{T<:Number}(X::AbstractVector{T}, Y::AbstractVector{T}, pm::Array{Int,2})
|
||||||
|
result = zeros(X)
|
||||||
|
for (j,y) in enumerate(Y)
|
||||||
|
if y != zero(T)
|
||||||
|
for (i, index) in enumerate(pm[:,j])
|
||||||
|
if X[i] != zero(T)
|
||||||
|
index == 0 && throw(ArgumentError("The product don't seem to belong to the span of basis!"))
|
||||||
|
result[index] += X[i]*y
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
return result
|
||||||
|
end
|
||||||
|
|
||||||
|
function group_star_multiplication{T<:Number}(X::GroupAlgebraElement{T},
|
||||||
|
Y::GroupAlgebraElement{T})
|
||||||
|
X.product_matrix == Y.product_matrix || ArgumentError(
|
||||||
|
"Elements don't seem to belong to the same Group Algebra!")
|
||||||
|
result = algebra_multiplication(X.coefficients, Y.coefficients, X.product_matrix)
|
||||||
|
return GroupAlgebraElement(result, X.product_matrix)
|
||||||
|
end
|
||||||
|
|
||||||
|
function group_star_multiplication{T<:Number, S<:Number}(
|
||||||
|
X::GroupAlgebraElement{T},
|
||||||
|
Y::GroupAlgebraElement{S})
|
||||||
|
S == T || warn("Multiplying elements with different base rings!")
|
||||||
|
return group_star_multiplication(promote(X,Y)...)
|
||||||
|
end
|
||||||
|
|
||||||
|
(*){T<:Number, S<:Number}(X::GroupAlgebraElement{T},
|
||||||
|
Y::GroupAlgebraElement{S}) = group_star_multiplication(X,Y);
|
||||||
|
|
||||||
|
(*){T<:Number}(a::T, X::GroupAlgebraElement{T}) = GroupAlgebraElement(
|
||||||
|
a*X.coefficients, X.product_matrix)
|
||||||
|
|
||||||
|
function scalar_multiplication{T<:Number, S<:Number}(a::T,
|
||||||
|
X::GroupAlgebraElement{S})
|
||||||
|
promote_type(T,S) == S || warn("Scalar and coefficients are in different rings! Promoting result to $(promote_type(T,S))")
|
||||||
|
return GroupAlgebraElement(a*X.coefficients, X.product_matrix)
|
||||||
|
end
|
||||||
|
|
||||||
|
(*){T<:Number}(a::T,X::GroupAlgebraElement) = scalar_multiplication(a, X)
|
||||||
|
|
||||||
|
//{T<:Rational, S<:Rational}(X::GroupAlgebraElement{T}, a::S) =
|
||||||
|
GroupAlgebraElement(X.coefficients//a, X.product_matrix)
|
||||||
|
|
||||||
|
//{T<:Rational, S<:Integer}(X::GroupAlgebraElement{T}, a::S) =
|
||||||
|
X//convert(T,a)
|
||||||
|
|
||||||
|
length(X::GroupAlgebraElement) = length(X.coefficients)
|
||||||
|
size(X::GroupAlgebraElement) = size(X.coefficients)
|
||||||
|
|
||||||
|
function norm(X::GroupAlgebraElement, p=2)
|
||||||
|
if p == 1
|
||||||
|
return sum(abs(X.coefficients))
|
||||||
|
elseif p == Inf
|
||||||
|
return max(abs(X.coefficients))
|
||||||
|
else
|
||||||
|
return norm(X.coefficients, p)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
ɛ(X::GroupAlgebraElement) = sum(X.coefficients)
|
||||||
|
|
||||||
|
function rationalize{T<:Integer, S<:Number}(
|
||||||
|
::Type{T}, X::GroupAlgebraElement{S}; tol=eps(S))
|
||||||
|
v = rationalize(T, X.coefficients, tol=tol)
|
||||||
|
return GroupAlgebraElement(v, X.product_matrix)
|
||||||
|
end
|
||||||
|
|
||||||
|
end
|
135
src/Property(T).jl
Normal file
135
src/Property(T).jl
Normal file
@ -0,0 +1,135 @@
|
|||||||
|
module Property(T)
|
||||||
|
|
||||||
|
using GroupAlgebras
|
||||||
|
import SCS.SCSSolver
|
||||||
|
|
||||||
|
include("sdps.jl")
|
||||||
|
include("checksolution.jl")
|
||||||
|
|
||||||
|
function pmΔfilenames(name::String)
|
||||||
|
if !isdir(name)
|
||||||
|
mkdir(name)
|
||||||
|
end
|
||||||
|
prefix = name
|
||||||
|
pm_filename = joinpath(prefix, "product_matrix.jld")
|
||||||
|
Δ_coeff_filename = joinpath(prefix, "delta.coefficients.jld")
|
||||||
|
return pm_filename, Δ_coeff_filename
|
||||||
|
end
|
||||||
|
|
||||||
|
function κSDPfilenames(name::String)
|
||||||
|
if !isdir(name)
|
||||||
|
mkdir(name)
|
||||||
|
end
|
||||||
|
prefix = name
|
||||||
|
κ_filename = joinpath(prefix, "kappa.jld")
|
||||||
|
SDP_filename = joinpath(prefix, "SDPmatrixA.jld")
|
||||||
|
return κ_filename, SDP_filename
|
||||||
|
end
|
||||||
|
|
||||||
|
function ΔandSDPconstraints(name::String)
|
||||||
|
pm_fname, Δ_fname = pmΔfilenames(name)
|
||||||
|
f₁ = isfile(pm_fname)
|
||||||
|
f₂ = isfile(Δ_fname)
|
||||||
|
if f₁ && f₂
|
||||||
|
println("Loading precomputed pm, Δ, sdp_constraints...")
|
||||||
|
product_matrix = load(pm_fname, "pm")
|
||||||
|
L = load(Δ_fname, "Δ")[:, 1]
|
||||||
|
Δ = GroupAlgebraElement(L, Array{Int,2}(product_matrix))
|
||||||
|
sdp_constraints = constraints_from_pm(product_matrix)
|
||||||
|
else
|
||||||
|
throw(ArgumentError("You need to precompute pm and Δ to load it!"))
|
||||||
|
end
|
||||||
|
return Δ, sdp_constraints
|
||||||
|
end
|
||||||
|
|
||||||
|
function ΔandSDPconstraints(name::String, ID, generating_func::Function)
|
||||||
|
pm_fname, Δ_fname = pmΔfilenames(name)
|
||||||
|
Δ, sdp_constraints = ΔandSDPconstraints(ID, generating_func())
|
||||||
|
save(pm_fname, "pm", Δ.product_matrix)
|
||||||
|
save(Δ_fname, "Δ", Δ.coefficients)
|
||||||
|
return Δ, sdp_constraints
|
||||||
|
end
|
||||||
|
|
||||||
|
function κandA(name::String)
|
||||||
|
κ_fname, SDP_fname = κSDPfilenames(name)
|
||||||
|
f₁ = isfile(κ_fname)
|
||||||
|
f₂ = isfile(SDP_fname)
|
||||||
|
if f₁ && f₂
|
||||||
|
println("Loading precomputed κ, A...")
|
||||||
|
κ = load(κ_fname, "κ")
|
||||||
|
A = load(SDP_fname, "A")
|
||||||
|
else
|
||||||
|
throw(ArgumentError("You need to precompute κ and SDP matrix A to load it!"))
|
||||||
|
end
|
||||||
|
return κ, A
|
||||||
|
end
|
||||||
|
|
||||||
|
function κandA(name::String, sdp_constraints, Δ::GroupAlgebraElement, solver::AbstractMathProgSolver; upper_bound=Inf)
|
||||||
|
println("Creating SDP problem...")
|
||||||
|
@time SDP_problem = create_SDP_problem(sdp_constraints, Δ; upper_bound=upper_bound)
|
||||||
|
println("Solving SDP problem maximizing κ...")
|
||||||
|
κ, A = solve_SDP(SDP_problem, solver)
|
||||||
|
κ_fname, A_fname = κSDPfilenames(name)
|
||||||
|
if κ > 0
|
||||||
|
save(κ_fname, "κ", κ)
|
||||||
|
save(A_fname, "A", A)
|
||||||
|
else
|
||||||
|
throw(ErrorException("Solver $solver did not produce a valid solution!: κ = $κ"))
|
||||||
|
end
|
||||||
|
return κ, A
|
||||||
|
end
|
||||||
|
|
||||||
|
function check_property_T(name::String, ID, generate_B₄::Function;
|
||||||
|
verbose=true, tol=1e-6, upper_bound=Inf)
|
||||||
|
|
||||||
|
# solver = MosekSolver(INTPNT_CO_TOL_REL_GAP=tol, QUIET=!verbose)
|
||||||
|
solver = SCSSolver(eps=tol, max_iters=100000, verbose=verbose)
|
||||||
|
|
||||||
|
@show name
|
||||||
|
@show verbose
|
||||||
|
@show tol
|
||||||
|
|
||||||
|
|
||||||
|
Δ, sdp_constraints = try
|
||||||
|
ΔandSDPconstraints(name)
|
||||||
|
catch err
|
||||||
|
if isa(err, ArgumentError)
|
||||||
|
ΔandSDPconstraints(name, ID, generate_B₄)
|
||||||
|
else
|
||||||
|
throw(err)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
println("|S| = $(countnz(Δ.coefficients) -1)")
|
||||||
|
@show length(Δ)
|
||||||
|
@show size(Δ.product_matrix)
|
||||||
|
|
||||||
|
κ, A = try
|
||||||
|
κandA(name)
|
||||||
|
catch err
|
||||||
|
if isa(err, ArgumentError)
|
||||||
|
κandA(name, sdp_constraints, Δ, solver; upper_bound=upper_bound)
|
||||||
|
else
|
||||||
|
throw(err)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
@show κ
|
||||||
|
@show sum(A)
|
||||||
|
@show maximum(A)
|
||||||
|
@show minimum(A)
|
||||||
|
|
||||||
|
if κ > 0
|
||||||
|
|
||||||
|
true_kappa = ℚ_distance_to_positive_cone(Δ, κ, A, tol=tol, verbose=verbose, rational=true)
|
||||||
|
true_kappa = Float64(trunc(true_kappa,12))
|
||||||
|
if true_kappa > 0
|
||||||
|
println("κ($name, S) ≥ $true_kappa: Group HAS property (T)!")
|
||||||
|
else
|
||||||
|
println("κ($name, S) ≥ $true_kappa: Group may NOT HAVE property (T)!")
|
||||||
|
end
|
||||||
|
else
|
||||||
|
println("κ($name, S) ≥ $κ < 0: Tells us nothing about property (T)")
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
end # module Property(T)
|
142
src/checksolution.jl
Normal file
142
src/checksolution.jl
Normal file
@ -0,0 +1,142 @@
|
|||||||
|
using ProgressMeter
|
||||||
|
using ValidatedNumerics
|
||||||
|
import Base: rationalize
|
||||||
|
|
||||||
|
function EOI{T<:Number}(Δ::GroupAlgebraElement{T}, κ::T)
|
||||||
|
return Δ*Δ - κ*Δ
|
||||||
|
end
|
||||||
|
|
||||||
|
function square_as_elt(vector, elt)
|
||||||
|
zzz = zeros(elt.coefficients)
|
||||||
|
zzz[1:length(vector)] = vector
|
||||||
|
# new_base_elt = GroupAlgebraElement(zzz, elt.product_matrix)
|
||||||
|
# return (new_base_elt*new_base_elt).coefficients
|
||||||
|
return GroupAlgebras.algebra_multiplication(zzz, zzz, elt.product_matrix)
|
||||||
|
end
|
||||||
|
|
||||||
|
function compute_SOS{T<:Number}(sqrt_matrix::Array{T,2},
|
||||||
|
elt::GroupAlgebraElement{T})
|
||||||
|
n = size(sqrt_matrix,2)
|
||||||
|
result = zeros(T, length(elt.coefficients))
|
||||||
|
p = Progress(n, 1, "Checking SOS decomposition...", 50)
|
||||||
|
for i in 1:n
|
||||||
|
result .+= square_as_elt(sqrt_matrix[:,i], elt)
|
||||||
|
next!(p)
|
||||||
|
end
|
||||||
|
return GroupAlgebraElement{T}(result, elt.product_matrix)
|
||||||
|
end
|
||||||
|
|
||||||
|
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
|
||||||
|
sqrt_corrected = similar(sqrt_matrix)
|
||||||
|
l = size(sqrt_matrix,2)
|
||||||
|
for i in 1:l
|
||||||
|
col = view(sqrt_matrix,:,i)
|
||||||
|
sqrt_corrected[:,i] = col - sum(col)//l
|
||||||
|
# @assert sum(sqrt_corrected[:,i]) == 0
|
||||||
|
end
|
||||||
|
return sqrt_corrected
|
||||||
|
end
|
||||||
|
|
||||||
|
function check_solution{T<:Number}(κ::T, sqrt_matrix::Array{T,2}, Δ::GroupAlgebraElement{T}; verbose=true, augmented=false)
|
||||||
|
result = compute_SOS(sqrt_matrix, Δ)
|
||||||
|
if augmented
|
||||||
|
epsilon = GroupAlgebras.ɛ(result)
|
||||||
|
if isa(epsilon, Interval)
|
||||||
|
@assert 0 in epsilon
|
||||||
|
elseif isa(epsilon, Rational)
|
||||||
|
@assert epsilon == 0//1
|
||||||
|
else
|
||||||
|
warn("Does checking for augmentation has meaning for $(typeof(epsilon))?")
|
||||||
|
end
|
||||||
|
end
|
||||||
|
SOS_diff = EOI(Δ, κ) - result
|
||||||
|
|
||||||
|
eoi_SOS_L₁_dist = norm(SOS_diff,1)
|
||||||
|
|
||||||
|
if verbose
|
||||||
|
@show κ
|
||||||
|
ɛ_dist = GroupAlgebras.ɛ(SOS_diff)
|
||||||
|
@printf("ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) ≈ %.10f\n", ɛ_dist)
|
||||||
|
@printf("‖Δ² - κΔ - ∑ξᵢ*ξᵢ‖₁ ≈ %.10f\n", eoi_SOS_L₁_dist)
|
||||||
|
end
|
||||||
|
|
||||||
|
distance_to_cone = κ - 2^3*eoi_SOS_L₁_dist
|
||||||
|
return distance_to_cone
|
||||||
|
end
|
||||||
|
|
||||||
|
import ValidatedNumerics.±
|
||||||
|
function (±)(X::AbstractArray, tol::Real)
|
||||||
|
r{T}(x::T) = ( x==zero(T) ? @interval(x) : x ± tol)
|
||||||
|
return r.(X)
|
||||||
|
end
|
||||||
|
|
||||||
|
(±)(X::GroupAlgebraElement, tol::Real) = GroupAlgebraElement(X.coefficients ± tol, X.product_matrix)
|
||||||
|
|
||||||
|
function Base.rationalize{T<:Integer, S<:Real}(::Type{T},
|
||||||
|
X::AbstractArray{S}; tol::Real=eps(eltype(X)))
|
||||||
|
r(x) = rationalize(T, x, tol=tol)
|
||||||
|
return r.(X)
|
||||||
|
end
|
||||||
|
|
||||||
|
ℚ(x, tol::Real) = rationalize(BigInt, x, tol=tol)
|
||||||
|
|
||||||
|
function ℚ_distance_to_positive_cone(Δ::GroupAlgebraElement, κ, A;
|
||||||
|
tol=1e-7, verbose=true, rational=false)
|
||||||
|
|
||||||
|
isapprox(eigvals(A), abs(eigvals(A)), atol=tol) ||
|
||||||
|
warn("The solution matrix doesn't seem to be positive definite!")
|
||||||
|
@assert A == Symmetric(A)
|
||||||
|
A_sqrt = real(sqrtm(A))
|
||||||
|
|
||||||
|
# println("")
|
||||||
|
# println("Checking in floating-point arithmetic...")
|
||||||
|
# @time fp_distance = check_solution(κ, A_sqrt, Δ, verbose=verbose)
|
||||||
|
# println("Floating point distance (to positive cone) ≈ $(Float64(trunc(fp_distance,8)))")
|
||||||
|
# println("-------------------------------------------------------------")
|
||||||
|
# println("")
|
||||||
|
#
|
||||||
|
# if fp_distance ≤ 0
|
||||||
|
# return fp_distance
|
||||||
|
# end
|
||||||
|
|
||||||
|
println("Checking in interval arithmetic...")
|
||||||
|
A_sqrtᴵ = A_sqrt ± tol
|
||||||
|
κᴵ = κ ± tol
|
||||||
|
Δᴵ = Δ ± tol
|
||||||
|
@time Interval_distance = check_solution(κᴵ, A_sqrtᴵ, Δᴵ, verbose=verbose)
|
||||||
|
# @assert isa(ℚ_distance, Rational)
|
||||||
|
println("The actual distance (to positive cone) is contained in $Interval_distance")
|
||||||
|
println("-------------------------------------------------------------")
|
||||||
|
println("")
|
||||||
|
|
||||||
|
if Interval_distance.lo ≤ 0
|
||||||
|
return Interval_distance.lo
|
||||||
|
end
|
||||||
|
|
||||||
|
println("Projecting columns of A_sqrt to the augmentation ideal...")
|
||||||
|
A_sqrt_ℚ = ℚ(A_sqrt, tol)
|
||||||
|
A_sqrt_ℚ_aug = correct_to_augmentation_ideal(A_sqrt_ℚ)
|
||||||
|
κ_ℚ = ℚ(κ, tol)
|
||||||
|
Δ_ℚ = ℚ(Δ, tol)
|
||||||
|
|
||||||
|
A_sqrt_ℚ_augᴵ = A_sqrt_ℚ_aug ± tol
|
||||||
|
κᴵ = κ_ℚ ± tol
|
||||||
|
Δᴵ = Δ_ℚ ± tol
|
||||||
|
@time Interval_dist_to_Σ² = check_solution(κᴵ, A_sqrt_ℚ_augᴵ, Δᴵ, verbose=verbose, augmented=true)
|
||||||
|
println("The Augmentation-projected actual distance (to positive cone) is contained in $Interval_dist_to_Σ²")
|
||||||
|
println("-------------------------------------------------------------")
|
||||||
|
println("")
|
||||||
|
|
||||||
|
if Interval_dist_to_Σ².lo ≤ 0 || !rational
|
||||||
|
return Interval_dist_to_Σ².lo
|
||||||
|
else
|
||||||
|
|
||||||
|
println("Checking Projected SOS decomposition in exact rational arithmetic...")
|
||||||
|
@time ℚ_dist_to_Σ² = check_solution(κ_ℚ, A_sqrt_ℚ_aug, Δ_ℚ, verbose=verbose, augmented=true)
|
||||||
|
@assert isa(ℚ_dist_to_Σ², Rational)
|
||||||
|
println("Augmentation-projected rational distance (to positive cone) ≥ $(Float64(trunc(ℚ_dist_to_Σ²,8)))")
|
||||||
|
println("-------------------------------------------------------------")
|
||||||
|
return ℚ_dist_to_Σ²
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
87
src/sdps.jl
Normal file
87
src/sdps.jl
Normal file
@ -0,0 +1,87 @@
|
|||||||
|
using JuMP
|
||||||
|
import MathProgBase: AbstractMathProgSolver
|
||||||
|
|
||||||
|
function create_product_matrix(basis, limit)
|
||||||
|
product_matrix = zeros(Int, (limit,limit))
|
||||||
|
basis_dict = Dict{Array, Int}(x => i
|
||||||
|
for (i,x) in enumerate(basis))
|
||||||
|
for i in 1:limit
|
||||||
|
x_inv::eltype(basis) = inv(basis[i])
|
||||||
|
for j in 1:limit
|
||||||
|
w = x_inv*basis[j]
|
||||||
|
product_matrix[i,j] = basis_dict[w]
|
||||||
|
# index = findfirst(basis, w)
|
||||||
|
# index ≠ 0 || throw(ArgumentError("Product is not supported on basis: $w"))
|
||||||
|
# product_matrix[i,j] = index
|
||||||
|
end
|
||||||
|
end
|
||||||
|
return product_matrix
|
||||||
|
end
|
||||||
|
|
||||||
|
function constraints_from_pm(pm, total_length)
|
||||||
|
n = size(pm,1)
|
||||||
|
constraints = constraints = [Array{Int,1}[] for x in 1:total_length]
|
||||||
|
for j in 1:n
|
||||||
|
Threads.@threads for i in 1:n
|
||||||
|
idx = pm[i,j]
|
||||||
|
push!(constraints[idx], [i,j])
|
||||||
|
end
|
||||||
|
end
|
||||||
|
return constraints
|
||||||
|
end
|
||||||
|
|
||||||
|
constraints_from_pm(pm) = constraints_from_pm(pm, maximum(pm))
|
||||||
|
|
||||||
|
function splaplacian_coeff(S, basis, n=length(basis))
|
||||||
|
result = spzeros(n)
|
||||||
|
result[1] = float(length(S))
|
||||||
|
for s in S
|
||||||
|
ind = findfirst(basis, s)
|
||||||
|
result[ind] += -1.0
|
||||||
|
end
|
||||||
|
return result
|
||||||
|
end
|
||||||
|
|
||||||
|
function laplacian_coeff(S, basis)
|
||||||
|
return full(splaplacian_coeff(S,basis))
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
function create_SDP_problem(matrix_constraints, Δ::GroupAlgebraElement; upper_bound=Inf)
|
||||||
|
N = size(Δ.product_matrix,1)
|
||||||
|
const Δ² = Δ*Δ
|
||||||
|
@assert length(Δ) == length(matrix_constraints)
|
||||||
|
m = JuMP.Model();
|
||||||
|
JuMP.@variable(m, A[1:N, 1:N], SDP)
|
||||||
|
JuMP.@SDconstraint(m, A >= 0)
|
||||||
|
JuMP.@constraint(m, sum(A[i] for i in eachindex(A)) == 0)
|
||||||
|
JuMP.@variable(m, κ >= 0.0)
|
||||||
|
if upper_bound < Inf
|
||||||
|
JuMP.@constraint(m, κ <= upper_bound)
|
||||||
|
end
|
||||||
|
JuMP.@objective(m, Max, κ)
|
||||||
|
|
||||||
|
for (pairs, δ², δ) in zip(matrix_constraints, Δ².coefficients, Δ.coefficients)
|
||||||
|
JuMP.@constraint(m, sum(A[i,j] for (i,j) in pairs) == δ² - κ*δ)
|
||||||
|
end
|
||||||
|
return m
|
||||||
|
end
|
||||||
|
|
||||||
|
function solve_SDP(SDP_problem, solver)
|
||||||
|
@show SDP_problem
|
||||||
|
@show solver
|
||||||
|
|
||||||
|
JuMP.setsolver(SDP_problem, solver);
|
||||||
|
# @time MathProgBase.writeproblem(SDP_problem, "/tmp/SDP_problem")
|
||||||
|
solution_status = JuMP.solve(SDP_problem);
|
||||||
|
|
||||||
|
if solution_status != :Optimal
|
||||||
|
warn("The solver did not solve the problem successfully!")
|
||||||
|
end
|
||||||
|
@show solution_status
|
||||||
|
|
||||||
|
κ = JuMP.getvalue(JuMP.getvariable(SDP_problem, :κ))
|
||||||
|
A = JuMP.getvalue(JuMP.getvariable(SDP_problem, :A))
|
||||||
|
return κ, A
|
||||||
|
end
|
||||||
|
|
5
test/runtests.jl
Normal file
5
test/runtests.jl
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
using Property(T)
|
||||||
|
using Base.Test
|
||||||
|
|
||||||
|
# write your own tests here
|
||||||
|
@test 1 == 2
|
Loading…
Reference in New Issue
Block a user