mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-29 01:40:28 +01:00
include sqadjop.jl from 1812.03456.jl file
This commit is contained in:
parent
e9bb6f13dd
commit
e23b6a85dc
26
src/1812.03456.jl
Normal file
26
src/1812.03456.jl
Normal file
@ -0,0 +1,26 @@
|
||||
indexing(n) = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
||||
|
||||
function generating_set(G::AutGroup{N}, n=N) where N
|
||||
|
||||
rmuls = [Groups.rmul_autsymbol(i,j) for (i,j) in indexing(n)]
|
||||
lmuls = [Groups.lmul_autsymbol(i,j) for (i,j) in indexing(n)]
|
||||
gen_set = G.([rmuls; lmuls])
|
||||
|
||||
return [gen_set; inv.(gen_set)]
|
||||
end
|
||||
|
||||
function EltaryMat(M::MatAlgebra, i::Integer, j::Integer, val=1)
|
||||
@assert i ≠ j
|
||||
@assert 1 ≤ i ≤ nrows(M)
|
||||
@assert 1 ≤ j ≤ ncols(M)
|
||||
m = one(M)
|
||||
m[i,j] = val
|
||||
return m
|
||||
end
|
||||
|
||||
function generating_set(M::MatAlgebra, n=nrows(M))
|
||||
elts = [EltaryMat(M, i,j) for (i,j) in indexing(n)]
|
||||
return elem_type(M)[elts; inv.(elts)]
|
||||
end
|
||||
|
||||
include("sqadjop.jl")
|
@ -22,9 +22,8 @@ include("RGprojections.jl")
|
||||
include("orbitdata.jl")
|
||||
include("sos_sdps.jl")
|
||||
include("checksolution.jl")
|
||||
include("sqadjop.jl")
|
||||
|
||||
include("1712.07167.jl")
|
||||
|
||||
include("1812.03456.jl")
|
||||
|
||||
end # module Property(T)
|
||||
|
@ -1,29 +1,3 @@
|
||||
indexing(n) = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
||||
|
||||
function generating_set(G::AutGroup{N}, n=N) where N
|
||||
|
||||
rmuls = [Groups.rmul_autsymbol(i,j) for (i,j) in indexing(n)]
|
||||
lmuls = [Groups.lmul_autsymbol(i,j) for (i,j) in indexing(n)]
|
||||
gen_set = G.([rmuls; lmuls])
|
||||
|
||||
return [gen_set; inv.(gen_set)]
|
||||
end
|
||||
|
||||
function E(M::MatAlgebra, i::Integer, j::Integer, val=1)
|
||||
@assert i ≠ j
|
||||
@assert 1 ≤ i ≤ nrows(M)
|
||||
@assert 1 ≤ j ≤ ncols(M)
|
||||
m = one(M)
|
||||
m[i,j] = val
|
||||
return m
|
||||
end
|
||||
|
||||
function generating_set(M::MatAlgebra, n=M.n)
|
||||
|
||||
elts = [E(M, i,j) for (i,j) in indexing(n)]
|
||||
return elem_type(M)[elts; inv.(elts)]
|
||||
end
|
||||
|
||||
isopposite(σ::perm, τ::perm, i=1, j=2) =
|
||||
σ[i] ≠ τ[i] && σ[i] ≠ τ[j] &&
|
||||
σ[j] ≠ τ[i] && σ[j] ≠ τ[j]
|
||||
@ -91,9 +65,6 @@ function Op(RG::GroupRing, N::Integer)
|
||||
return op÷factorial(N-2)^2
|
||||
end
|
||||
|
||||
AbstractAlgebra.nrows(M::MatAlgebra) = M.n
|
||||
AbstractAlgebra.ncols(M::MatAlgebra) = M.n
|
||||
|
||||
for Elt in [:Sq, :Adj, :Op]
|
||||
@eval begin
|
||||
$Elt(RG::GroupRing{AutGroup{N}}) where N = $Elt(RG, N)
|
||||
|
@ -9,8 +9,8 @@
|
||||
for N in [3,4]
|
||||
M = MatrixAlgebra(zz, N)
|
||||
|
||||
@test PropertyT.E(M, 1, 2) isa MatAlgElem
|
||||
e12 = PropertyT.E(M, 1, 2)
|
||||
@test PropertyT.EltaryMat(M, 1, 2) isa MatAlgElem
|
||||
e12 = PropertyT.EltaryMat(M, 1, 2)
|
||||
@test e12[1,2] == 1
|
||||
@test inv(e12)[1,2] == -1
|
||||
|
||||
@ -65,9 +65,9 @@
|
||||
@test op == PropertyT.Op(RG)
|
||||
|
||||
e = one(M)
|
||||
g = PropertyT.E(M, 1,2)
|
||||
h = PropertyT.E(M, 1,3)
|
||||
k = PropertyT.E(M, 3,4)
|
||||
g = PropertyT.EltaryMat(M, 1,2)
|
||||
h = PropertyT.EltaryMat(M, 1,3)
|
||||
k = PropertyT.EltaryMat(M, 3,4)
|
||||
|
||||
edges = N*(N-1)÷2
|
||||
@test sq[e] == 20*edges
|
||||
|
Loading…
Reference in New Issue
Block a user