1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2025-01-13 22:52:34 +01:00

decouple obtaining Delta from constraints

This commit is contained in:
kalmarek 2018-01-02 00:01:24 +01:00
parent 523003cc2a
commit e5366b7305

View File

@ -80,42 +80,37 @@ filename(prefix::String, ::Type{Val{:Δ}}) = joinpath(prefix, "delta.jld")
filename(prefix::String, ::Type{Val{}}) = joinpath(prefix, "lambda.jld") filename(prefix::String, ::Type{Val{}}) = joinpath(prefix, "lambda.jld")
filename(prefix::String, ::Type{Val{:P}}) = joinpath(prefix, "SDPmatrix.jld") filename(prefix::String, ::Type{Val{:P}}) = joinpath(prefix, "SDPmatrix.jld")
function ΔandSDPconstraints(prefix::String, G::Group) function Delta(name::String, G::Group)
info(LOGGER, "Loading precomputed pm, Δ, sdp_constraints...") info(LOGGER, "Loading precomputed Δ...")
pm_fname, Δ_fname = pmΔfilenames(prefix) if exists(filename(name, )) && exists(filename(name, :pm))
RG = GroupRing(G, load(filename(name, :pm), "pm"))
product_matrix = load(pm_fname, "pm") Δ = GroupRingElem(load(filename(name, ), "Δ")[:, 1], RG)
sdp_constraints = constraints(product_matrix) else
throw("You need to precompute $(filename(name, :pm)) and $(filename(name, )) to load it!")
RG = GroupRing(G, product_matrix) end
Δ = GroupRingElem(load(Δ_fname, "Δ")[:, 1], RG) return Δ
return Δ, sdp_constraints
end end
function ΔandSDPconstraints{T<:GroupElem}(name::String, S::Vector{T}, Id::T; radius::Int=2) function Delta{T<:GroupElem}(name::String, S::Vector{T}, Id::T; radius::Int=2)
info(LOGGER, "Computing pm, Δ, sdp_constraints...") info(LOGGER, "Computing multiplication table, Δ...")
Δ, sdp_constraints = ΔandSDPconstraints(S, Id, radius=radius) Δ = Delta(S, Id, radius=radius)
pm_fname, Δ_fname = pmΔfilenames(name) save(filename(name, :pm), "pm", parent(Δ).pm)
save(pm_fname, "pm", parent(Δ).pm) save(filename(name, ), "Δ", Δ.coeffs)
save(Δ_fname, "Δ", Δ.coeffs) return Δ
return Δ, sdp_constraints
end end
function ΔandSDPconstraints{T<:GroupElem}(S::Vector{T}, Id::T; radius::Int=2) function Delta{T<:GroupElem}(S::Vector{T}, Id::T; radius::Int=2)
info(LOGGER, "Generating balls of sizes $sizes") info(LOGGER, "Generating metric ball of radius $radius...")
@logtime LOGGER E_R, sizes = Groups.generate_balls(S, Id, radius=2*radius) @logtime LOGGER E_R, sizes = Groups.generate_balls(S, Id, radius=2*radius)
info(LOGGER, "Generated balls of sizes $sizes.")
info(LOGGER, "Creating product matrix...") info(LOGGER, "Creating product matrix...")
@logtime LOGGER pm = GroupRings.create_pm(E_R, GroupRings.reverse_dict(E_R), sizes[radius]; twisted=true) @logtime LOGGER pm = GroupRings.create_pm(E_R, GroupRings.reverse_dict(E_R), sizes[radius]; twisted=true)
info(LOGGER, "Creating sdp_constratints...")
@logtime LOGGER sdp_constraints = PropertyT.constraints(pm)
RG = GroupRing(parent(Id), E_R, pm) RG = GroupRing(parent(Id), E_R, pm)
Δ = splaplacian(RG, S) Δ = splaplacian(RG, S)
return Δ, sdp_constraints return Δ
end end
function λandP(name::String) function λandP(name::String)
@ -193,10 +188,10 @@ function check_property_T(name::String, S, Id, solver, upper_bound, tol, radius)
if exists(filename(name, :pm)) && exists(filename(name, )) if exists(filename(name, :pm)) && exists(filename(name, ))
# cached # cached
Δ, sdp_constraints = ΔandSDPconstraints(name, parent(S[1])) Δ = Delta(name, parent(S[1]))
else else
# compute # compute
Δ, sdp_constraints = ΔandSDPconstraints(name, S, Id, radius=radius) Δ = Delta(name, S, Id, radius=radius)
end end
if exists(filename(name, )) && exists(filename(name, :P)) if exists(filename(name, )) && exists(filename(name, :P))
@ -204,10 +199,10 @@ function check_property_T(name::String, S, Id, solver, upper_bound, tol, radius)
λ, P = λandP(name) λ, P = λandP(name)
else else
info(LOGGER, "Creating SDP problem...") info(LOGGER, "Creating SDP problem...")
SDP_problem, λ, P = create_SDP_problem(Δ, sdp_constraints, upper_bound=upper_bound) SDP_problem, λ_var, P_var = create_SDP_problem(Δ, PropertyT.constraints(parent(Δ).pm), upper_bound=upper_bound)
JuMP.setsolver(SDP_problem, solver) JuMP.setsolver(SDP_problem, solver)
λ, P = λandP(name, SDP_problem, λ, P) λ, P = λandP(name, SDP_problem, λ_var, P_var)
end end
info(LOGGER, "λ = ") info(LOGGER, "λ = ")