mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-12-26 02:30:29 +01:00
Mv GroupAlgebras to a separate package
This commit is contained in:
parent
eac8cb6817
commit
e6f65688e9
@ -1,133 +0,0 @@
|
||||
module GroupAlgebras
|
||||
|
||||
import Base: convert, show, isequal, ==
|
||||
import Base: +, -, *, //
|
||||
import Base: size, length, norm, rationalize
|
||||
|
||||
export GroupAlgebraElement
|
||||
|
||||
|
||||
immutable GroupAlgebraElement{T<:Number}
|
||||
coefficients::AbstractVector{T}
|
||||
product_matrix::Array{Int,2}
|
||||
# basis::Array{Any,1}
|
||||
|
||||
function GroupAlgebraElement(coefficients::AbstractVector,
|
||||
product_matrix::Array{Int,2})
|
||||
|
||||
size(product_matrix, 1) == size(product_matrix, 2) ||
|
||||
throw(ArgumentError("Product matrix has to be square"))
|
||||
new(coefficients, product_matrix)
|
||||
end
|
||||
end
|
||||
|
||||
# GroupAlgebraElement(c,pm,b) = GroupAlgebraElement(c,pm)
|
||||
GroupAlgebraElement{T}(c::AbstractVector{T},pm) = GroupAlgebraElement{T}(c,pm)
|
||||
|
||||
convert{T<:Number}(::Type{T}, X::GroupAlgebraElement) =
|
||||
GroupAlgebraElement(convert(AbstractVector{T}, X.coefficients), X.product_matrix)
|
||||
|
||||
show{T}(io::IO, X::GroupAlgebraElement{T}) = print(io,
|
||||
"Element of Group Algebra over $T of length $(length(X)):\n $(X.coefficients)")
|
||||
|
||||
|
||||
function isequal{T, S}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{S})
|
||||
if T != S
|
||||
warn("Comparing elements with different coefficients Rings!")
|
||||
end
|
||||
X.product_matrix == Y.product_matrix || return false
|
||||
X.coefficients == Y.coefficients || return false
|
||||
return true
|
||||
end
|
||||
|
||||
(==)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = isequal(X,Y)
|
||||
|
||||
function add{T<:Number}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{T})
|
||||
X.product_matrix == Y.product_matrix || throw(ArgumentError(
|
||||
"Elements don't seem to belong to the same Group Algebra!"))
|
||||
return GroupAlgebraElement(X.coefficients+Y.coefficients, X.product_matrix)
|
||||
end
|
||||
|
||||
function add{T<:Number, S<:Number}(X::GroupAlgebraElement{T},
|
||||
Y::GroupAlgebraElement{S})
|
||||
warn("Adding elements with different base rings!")
|
||||
return GroupAlgebraElement(+(promote(X.coefficients, Y.coefficients)...),
|
||||
X.product_matrix)
|
||||
end
|
||||
|
||||
(+)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,Y)
|
||||
(-)(X::GroupAlgebraElement) = GroupAlgebraElement(-X.coefficients, X.product_matrix)
|
||||
(-)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,-Y)
|
||||
|
||||
function algebra_multiplication{T<:Number}(X::AbstractVector{T}, Y::AbstractVector{T}, pm::Array{Int,2})
|
||||
result = zeros(X)
|
||||
for (j,y) in enumerate(Y)
|
||||
if y != zero(T)
|
||||
for (i, index) in enumerate(pm[:,j])
|
||||
if X[i] != zero(T)
|
||||
index == 0 && throw(ArgumentError("The product don't seem to belong to the span of basis!"))
|
||||
result[index] += X[i]*y
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
||||
function group_star_multiplication{T<:Number}(X::GroupAlgebraElement{T},
|
||||
Y::GroupAlgebraElement{T})
|
||||
X.product_matrix == Y.product_matrix || ArgumentError(
|
||||
"Elements don't seem to belong to the same Group Algebra!")
|
||||
result = algebra_multiplication(X.coefficients, Y.coefficients, X.product_matrix)
|
||||
return GroupAlgebraElement(result, X.product_matrix)
|
||||
end
|
||||
|
||||
function group_star_multiplication{T<:Number, S<:Number}(
|
||||
X::GroupAlgebraElement{T},
|
||||
Y::GroupAlgebraElement{S})
|
||||
S == T || warn("Multiplying elements with different base rings!")
|
||||
return group_star_multiplication(promote(X,Y)...)
|
||||
end
|
||||
|
||||
(*){T<:Number, S<:Number}(X::GroupAlgebraElement{T},
|
||||
Y::GroupAlgebraElement{S}) = group_star_multiplication(X,Y);
|
||||
|
||||
(*){T<:Number}(a::T, X::GroupAlgebraElement{T}) = GroupAlgebraElement(
|
||||
a*X.coefficients, X.product_matrix)
|
||||
|
||||
function scalar_multiplication{T<:Number, S<:Number}(a::T,
|
||||
X::GroupAlgebraElement{S})
|
||||
promote_type(T,S) == S || warn("Scalar and coefficients are in different rings! Promoting result to $(promote_type(T,S))")
|
||||
return GroupAlgebraElement(a*X.coefficients, X.product_matrix)
|
||||
end
|
||||
|
||||
(*){T<:Number}(a::T,X::GroupAlgebraElement) = scalar_multiplication(a, X)
|
||||
|
||||
//{T<:Rational, S<:Rational}(X::GroupAlgebraElement{T}, a::S) =
|
||||
GroupAlgebraElement(X.coefficients//a, X.product_matrix)
|
||||
|
||||
//{T<:Rational, S<:Integer}(X::GroupAlgebraElement{T}, a::S) =
|
||||
X//convert(T,a)
|
||||
|
||||
length(X::GroupAlgebraElement) = length(X.coefficients)
|
||||
size(X::GroupAlgebraElement) = size(X.coefficients)
|
||||
|
||||
function norm(X::GroupAlgebraElement, p=2)
|
||||
if p == 1
|
||||
return sum(abs(X.coefficients))
|
||||
elseif p == Inf
|
||||
return max(abs(X.coefficients))
|
||||
else
|
||||
return norm(X.coefficients, p)
|
||||
end
|
||||
end
|
||||
|
||||
ɛ(X::GroupAlgebraElement) = sum(X.coefficients)
|
||||
|
||||
function rationalize{T<:Integer, S<:Number}(
|
||||
::Type{T}, X::GroupAlgebraElement{S}; tol=eps(S))
|
||||
v = rationalize(T, X.coefficients, tol=tol)
|
||||
return GroupAlgebraElement(v, X.product_matrix)
|
||||
end
|
||||
|
||||
end
|
Loading…
Reference in New Issue
Block a user